Climate-related variations in crustal trace elements in Dome C (East Antarctica) ice during the past 672 kyr

International audience Cr, Fe, Rb, Ba and U were determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in various sections of the 3,270 m deep ice core recently drilled at Dome C on the high East Antarctic plateau as part of the EPICA program. The sections were dated fro...

Full description

Bibliographic Details
Published in:Climatic Change
Main Authors: Marteel, Alexandrine, Gaspari, Vania, F. Boutron, Claude, Barbante, Carlo, Gabrielli, Paolo, Cescon, Paolo, Cozzi, Giulio, P. Ferrari, Christophe, Dommergue, Aurélien, Rosman, Kevin, Hong, Sungmin, Do Hur, Soon
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Department of Environmental Sciences, University of Ca’ Foscari Venice, Italy, Department of Earth Sciences Siena, Università degli Studi di Siena = University of Siena (UNISI), Environmental Sciences Department, Unité de Formation et de Recherche de Physique et Observatoire des Sciences de l'Univers, Université Joseph Fourier - Grenoble 1 (UJF), Institute for the Dynamics of Environmental Processes-CNR, Polytech Grenoble (Institut Universitaire de France), Department of Imaging and Applied Physics, Curtin University Perth, Planning and Transport Research Centre (PATREC)-Planning and Transport Research Centre (PATREC), Korea Polar Research Institute (KOPRI), EPICA-MIS, a joint ESF (European Science Foundation)/EC scientific programme
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2009
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-00421229
https://doi.org/10.1007/s10584-008-9456-3
Description
Summary:International audience Cr, Fe, Rb, Ba and U were determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in various sections of the 3,270 m deep ice core recently drilled at Dome C on the high East Antarctic plateau as part of the EPICA program. The sections were dated from 263 kyr bp (depth of 2,368 m) to 672 kyr bp (depth of 3,062 m). When combined with the data previously obtained by Gabrielli and co-workers for the upper 2,193 m of the core, it gives a detailed record for these elements during a 672-kyr period from the Holocene back to Marine Isotopic Stage (MIS) 16.2. Concentrations and fallout fluxes of all elements are found to be highly variable with low values during the successive interglacial periods and much higher values during the coldest periods of the last eight climatic cycles. Crustal enrichment factors indicates that rock and soil dust is the dominant source for Fe, Rb, Ba and U whatever the period and for Cr during the glacial maxima. The relationship between Cr, Fe, Rb, Ba and U concentrations and the deuterium content of the ice appears to be similar before and after the Mid-Brunhes Event (MBE, around 430 kyr bp). Mean concentration values observed during the successive interglacials from the Holocene to MIS 15.5 appear to vary from one interglacial to another at least for part of the elements. Concentrations observed during the successive glacial maxima suggest a decreasing trend from the most recent glacial maxima (MIS 2.2 and 4.2) to the oldest glacial maxima such as MIS 14.2, 14.4 and 16.2, which could be linked with changes in the size distribution of dust particles transported from mid-latitude areas to the East Antarctic ice cap.