Multifractal tools for image processing
International audience A large class of segmentation processes is based on edge detection, often performed by gradient computation. This is reliable when one can approximate the signal by a differentiable function, which is not the case for singularities such as corners or junctions. Besides, one ha...
Main Authors: | , |
---|---|
Other Authors: | , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
1993
|
Subjects: | |
Online Access: | https://hal.inria.fr/inria-00613998 |
_version_ | 1821729567818121216 |
---|---|
author | Lévy-Vehel, Jacques Berroir, Jean-Paul |
author2 | Medical imaging and robotics (EPIDAURE) Inria Paris-Rocquencourt Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA) École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D) EDF (EDF)-EDF (EDF) Kjell Arild Hogda and Bjorn Braathen and Karsten Heia |
author_facet | Lévy-Vehel, Jacques Berroir, Jean-Paul |
author_sort | Lévy-Vehel, Jacques |
collection | Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
description | International audience A large class of segmentation processes is based on edge detection, often performed by gradient computation. This is reliable when one can approximate the signal by a differentiable function, which is not the case for singularities such as corners or junctions. Besides, one has to use different filters to detect step-edge or line singularity model. We present a method to detect those singularities based on multifractal theory. This approach presents several advantages: it allows to do all the computations directly on the discrete signal, without any underlying regularity hypothesis; we obtain a set of low level tools able to detect any kind of singularity; this method is reliable on natural images, as shown by a complete study of noise effect and examples on natural scenes. |
format | Conference Object |
genre | Tromso Tromso |
genre_facet | Tromso Tromso |
geographic | Norway Tromso |
geographic_facet | Norway Tromso |
id | ftccsdartic:oai:HAL:inria-00613998v1 |
institution | Open Polar |
language | English |
long_lat | ENVELOPE(16.546,16.546,68.801,68.801) |
op_collection_id | ftccsdartic |
op_coverage | Tromso, Norway |
op_relation | inria-00613998 https://hal.inria.fr/inria-00613998 |
op_source | SCIA'93 : 8th Scandinavian Conference on Image Analysis https://hal.inria.fr/inria-00613998 SCIA'93 : 8th Scandinavian Conference on Image Analysis, May 1993, Tromso, Norway. pp.209-216 |
publishDate | 1993 |
publisher | HAL CCSD |
record_format | openpolar |
spelling | ftccsdartic:oai:HAL:inria-00613998v1 2025-01-17T01:08:00+00:00 Multifractal tools for image processing Lévy-Vehel, Jacques Berroir, Jean-Paul Medical imaging and robotics (EPIDAURE) Inria Paris-Rocquencourt Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA) École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D) EDF (EDF)-EDF (EDF) Kjell Arild Hogda and Bjorn Braathen and Karsten Heia Tromso, Norway 1993-05-25 https://hal.inria.fr/inria-00613998 en eng HAL CCSD IAPR inria-00613998 https://hal.inria.fr/inria-00613998 SCIA'93 : 8th Scandinavian Conference on Image Analysis https://hal.inria.fr/inria-00613998 SCIA'93 : 8th Scandinavian Conference on Image Analysis, May 1993, Tromso, Norway. pp.209-216 [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] info:eu-repo/semantics/conferenceObject Conference papers 1993 ftccsdartic 2020-12-26T05:33:42Z International audience A large class of segmentation processes is based on edge detection, often performed by gradient computation. This is reliable when one can approximate the signal by a differentiable function, which is not the case for singularities such as corners or junctions. Besides, one has to use different filters to detect step-edge or line singularity model. We present a method to detect those singularities based on multifractal theory. This approach presents several advantages: it allows to do all the computations directly on the discrete signal, without any underlying regularity hypothesis; we obtain a set of low level tools able to detect any kind of singularity; this method is reliable on natural images, as shown by a complete study of noise effect and examples on natural scenes. Conference Object Tromso Tromso Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Norway Tromso ENVELOPE(16.546,16.546,68.801,68.801) |
spellingShingle | [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] Lévy-Vehel, Jacques Berroir, Jean-Paul Multifractal tools for image processing |
title | Multifractal tools for image processing |
title_full | Multifractal tools for image processing |
title_fullStr | Multifractal tools for image processing |
title_full_unstemmed | Multifractal tools for image processing |
title_short | Multifractal tools for image processing |
title_sort | multifractal tools for image processing |
topic | [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] |
topic_facet | [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] |
url | https://hal.inria.fr/inria-00613998 |