Multifractal tools for image processing

International audience A large class of segmentation processes is based on edge detection, often performed by gradient computation. This is reliable when one can approximate the signal by a differentiable function, which is not the case for singularities such as corners or junctions. Besides, one ha...

Full description

Bibliographic Details
Main Authors: Lévy-Vehel, Jacques, Berroir, Jean-Paul
Other Authors: Medical imaging and robotics (EPIDAURE), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA), École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Kjell Arild Hogda and Bjorn Braathen and Karsten Heia
Format: Conference Object
Language:English
Published: HAL CCSD 1993
Subjects:
Online Access:https://hal.inria.fr/inria-00613998
id ftccsdartic:oai:HAL:inria-00613998v1
record_format openpolar
spelling ftccsdartic:oai:HAL:inria-00613998v1 2023-05-15T18:33:50+02:00 Multifractal tools for image processing Lévy-Vehel, Jacques Berroir, Jean-Paul Medical imaging and robotics (EPIDAURE) Inria Paris-Rocquencourt Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA) École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D) EDF (EDF)-EDF (EDF) Kjell Arild Hogda and Bjorn Braathen and Karsten Heia Tromso, Norway 1993-05-25 https://hal.inria.fr/inria-00613998 en eng HAL CCSD IAPR inria-00613998 https://hal.inria.fr/inria-00613998 SCIA'93 : 8th Scandinavian Conference on Image Analysis https://hal.inria.fr/inria-00613998 SCIA'93 : 8th Scandinavian Conference on Image Analysis, May 1993, Tromso, Norway. pp.209-216 [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] info:eu-repo/semantics/conferenceObject Conference papers 1993 ftccsdartic 2020-12-26T05:33:42Z International audience A large class of segmentation processes is based on edge detection, often performed by gradient computation. This is reliable when one can approximate the signal by a differentiable function, which is not the case for singularities such as corners or junctions. Besides, one has to use different filters to detect step-edge or line singularity model. We present a method to detect those singularities based on multifractal theory. This approach presents several advantages: it allows to do all the computations directly on the discrete signal, without any underlying regularity hypothesis; we obtain a set of low level tools able to detect any kind of singularity; this method is reliable on natural images, as shown by a complete study of noise effect and examples on natural scenes. Conference Object Tromso Tromso Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Norway Tromso ENVELOPE(16.546,16.546,68.801,68.801)
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
spellingShingle [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Lévy-Vehel, Jacques
Berroir, Jean-Paul
Multifractal tools for image processing
topic_facet [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
description International audience A large class of segmentation processes is based on edge detection, often performed by gradient computation. This is reliable when one can approximate the signal by a differentiable function, which is not the case for singularities such as corners or junctions. Besides, one has to use different filters to detect step-edge or line singularity model. We present a method to detect those singularities based on multifractal theory. This approach presents several advantages: it allows to do all the computations directly on the discrete signal, without any underlying regularity hypothesis; we obtain a set of low level tools able to detect any kind of singularity; this method is reliable on natural images, as shown by a complete study of noise effect and examples on natural scenes.
author2 Medical imaging and robotics (EPIDAURE)
Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA)
École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D)
EDF (EDF)-EDF (EDF)
Kjell Arild Hogda and Bjorn Braathen and Karsten Heia
format Conference Object
author Lévy-Vehel, Jacques
Berroir, Jean-Paul
author_facet Lévy-Vehel, Jacques
Berroir, Jean-Paul
author_sort Lévy-Vehel, Jacques
title Multifractal tools for image processing
title_short Multifractal tools for image processing
title_full Multifractal tools for image processing
title_fullStr Multifractal tools for image processing
title_full_unstemmed Multifractal tools for image processing
title_sort multifractal tools for image processing
publisher HAL CCSD
publishDate 1993
url https://hal.inria.fr/inria-00613998
op_coverage Tromso, Norway
long_lat ENVELOPE(16.546,16.546,68.801,68.801)
geographic Norway
Tromso
geographic_facet Norway
Tromso
genre Tromso
Tromso
genre_facet Tromso
Tromso
op_source SCIA'93 : 8th Scandinavian Conference on Image Analysis
https://hal.inria.fr/inria-00613998
SCIA'93 : 8th Scandinavian Conference on Image Analysis, May 1993, Tromso, Norway. pp.209-216
op_relation inria-00613998
https://hal.inria.fr/inria-00613998
_version_ 1766218470015369216