Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages

Times Cited: 40 International audience The cave bear, Ursus spelaeus, represents one of the most frequently found paleontological remains from the Pleistocene in Europe. The species has always been confined to Europe and was contemporary with the brown bear, Ursus arctos. Relationships between the c...

Full description

Bibliographic Details
Published in:Current Biology
Main Authors: Loreille, O., Orlando, L., Patou-Mathis, M., Philippe, M., Taberlet, P., Hanni, C.
Other Authors: Centre de génétique et de physiologie moléculaire et cellulaire (CGPhiMC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut de Paléontologie Humaine (IPH), Fondation I.P.H-Centre National de la Recherche Scientifique (CNRS), Muséum d'Histoire Naturelle, Laboratoire d'Ecologie Alpine (LECA), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2001
Subjects:
Online Access:https://hal.archives-ouvertes.fr/halsde-00279806
https://doi.org/10.1016/S0960-9822(01)00046-X
Description
Summary:Times Cited: 40 International audience The cave bear, Ursus spelaeus, represents one of the most frequently found paleontological remains from the Pleistocene in Europe. The species has always been confined to Europe and was contemporary with the brown bear, Ursus arctos. Relationships between the cave bear and the two lineages of brown bears defined in Europe, as well as the origins of the two species, remain controversial, mainly due to the wide morphological diversity of the fossil remains, which makes interpretation difficult [1, 2]. Sequence analysis of ancient DNA is a useful tool for resolving such problems because it provides an independent source of data [3]. We previously amplified a short DNA fragment of the mitochondrial DNA control region (mt control region) of a 40,000-year-old Ursus spelaeus sample [4]. In this paper, we describe the DNA analysis of two mtDNA regions, the control region and the cytochrome b gene. Control region sequences were obtained from ten samples of cave bears ranging from 130,000 to 20,000 years BP, and one particularly well-conserved sample gave a complete cyt b sequence. Our data demonstrate that cave bears split largely before the lineages of brown bears around 1.2 million years ago, Given its abundance, its wide distribution in space and time, and its large morphological diversity, the cave bear is a promising model for direct observation of the evolution of sequences throughout time, extinction periods, and the differentiation of populations shaped by climatic fluctuations during the Pleistocene.