Markov random fields for joint unmixing and segmentation of hyperspectral images
(Conférencier invité) International audience This paper studies a new Bayesian algorithm for the unmixing of hyperspectral images. The proposed Bayesian algorithm is based on the well-known linear mixing model (LMM). Spatial correlations between pixels are introduced using hidden variables, or label...
Published in: | 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing |
---|---|
Main Authors: | , , |
Other Authors: | , , , , , , , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2010
|
Subjects: | |
Online Access: | https://hal.science/hal-04248398 https://doi.org/10.1109/WHISPERS.2010.5594841 |
id |
ftccsdartic:oai:HAL:hal-04248398v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-04248398v1 2023-12-24T10:17:53+01:00 Markov random fields for joint unmixing and segmentation of hyperspectral images Eches, Olivier Dobigeon, Nicolas Tourneret, Jean-Yves Signal et Communications (IRIT-SC) Institut de recherche en informatique de Toulouse (IRIT) Université Toulouse Capitole (UT Capitole) Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI) Université Toulouse - Jean Jaurès (UT2J) Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) Université de Toulouse (UT) Institut National Polytechnique (Toulouse) (Toulouse INP) Institut Universitaire de France (IUF) Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) Télécommunications Spatiales et Aéronautiques - Telecommunications for Space ant Aeronautics (TéSA) Laboratoire de recherche coopératif dans les télécommunications spatiales et aéronautiques (TESA) IEEE Reykjavík, Iceland 2010-06-14 https://hal.science/hal-04248398 https://doi.org/10.1109/WHISPERS.2010.5594841 en eng HAL CCSD IEEE info:eu-repo/semantics/altIdentifier/doi/10.1109/WHISPERS.2010.5594841 ISBN: 978-1-4244-8906-0 hal-04248398 https://hal.science/hal-04248398 doi:10.1109/WHISPERS.2010.5594841 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 2nd Workshop on Hyperspectral Image and SIgnal Processing: Evolution in Remote Sensing (WHISPERS 2010) https://hal.science/hal-04248398 2nd Workshop on Hyperspectral Image and SIgnal Processing: Evolution in Remote Sensing (WHISPERS 2010), IEEE, Jun 2010, Reykjavík, Iceland. pp.1--4, ⟨10.1109/WHISPERS.2010.5594841⟩ https://ieeexplore.ieee.org/document/5594841 [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing info:eu-repo/semantics/conferenceObject Conference papers 2010 ftccsdartic https://doi.org/10.1109/WHISPERS.2010.5594841 2023-11-25T23:42:30Z (Conférencier invité) International audience This paper studies a new Bayesian algorithm for the unmixing of hyperspectral images. The proposed Bayesian algorithm is based on the well-known linear mixing model (LMM). Spatial correlations between pixels are introduced using hidden variables, or labels, and modeled via a Potts-Markov random field. We assume that the pure materials (or endmembers) contained in the image are known a priori or have been extracted by using an endmember extraction algorithm. The mixture coefficients (referred to as abundances) of the whole hyperspectral image are then estimated by using a hierarchical Bayesian algorithm. A reparametrization of the abundances is considered to handle the physical constraints associated to these parameters. Appropriate prior distributions are assigned to the other parameters and hyperparameters associated to the proposed model. To alleviate the complexity of the resulting joint distribution, a hybrid Gibbs algorithm is developed, allowing one to generate samples that are asymptotically distributed according to the full posterior distribution of interest. The generated samples are finally used to estimate the unknown model parameters. Simulations on synthetic data illustrate the performance of the proposed method. Conference Object Iceland Reykjavík Reykjavík Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Handle The ENVELOPE(161.983,161.983,-78.000,-78.000) Reykjavík 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 1 4 |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing |
spellingShingle |
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Eches, Olivier Dobigeon, Nicolas Tourneret, Jean-Yves Markov random fields for joint unmixing and segmentation of hyperspectral images |
topic_facet |
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing |
description |
(Conférencier invité) International audience This paper studies a new Bayesian algorithm for the unmixing of hyperspectral images. The proposed Bayesian algorithm is based on the well-known linear mixing model (LMM). Spatial correlations between pixels are introduced using hidden variables, or labels, and modeled via a Potts-Markov random field. We assume that the pure materials (or endmembers) contained in the image are known a priori or have been extracted by using an endmember extraction algorithm. The mixture coefficients (referred to as abundances) of the whole hyperspectral image are then estimated by using a hierarchical Bayesian algorithm. A reparametrization of the abundances is considered to handle the physical constraints associated to these parameters. Appropriate prior distributions are assigned to the other parameters and hyperparameters associated to the proposed model. To alleviate the complexity of the resulting joint distribution, a hybrid Gibbs algorithm is developed, allowing one to generate samples that are asymptotically distributed according to the full posterior distribution of interest. The generated samples are finally used to estimate the unknown model parameters. Simulations on synthetic data illustrate the performance of the proposed method. |
author2 |
Signal et Communications (IRIT-SC) Institut de recherche en informatique de Toulouse (IRIT) Université Toulouse Capitole (UT Capitole) Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI) Université Toulouse - Jean Jaurès (UT2J) Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) Université de Toulouse (UT) Institut National Polytechnique (Toulouse) (Toulouse INP) Institut Universitaire de France (IUF) Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) Télécommunications Spatiales et Aéronautiques - Telecommunications for Space ant Aeronautics (TéSA) Laboratoire de recherche coopératif dans les télécommunications spatiales et aéronautiques (TESA) IEEE |
format |
Conference Object |
author |
Eches, Olivier Dobigeon, Nicolas Tourneret, Jean-Yves |
author_facet |
Eches, Olivier Dobigeon, Nicolas Tourneret, Jean-Yves |
author_sort |
Eches, Olivier |
title |
Markov random fields for joint unmixing and segmentation of hyperspectral images |
title_short |
Markov random fields for joint unmixing and segmentation of hyperspectral images |
title_full |
Markov random fields for joint unmixing and segmentation of hyperspectral images |
title_fullStr |
Markov random fields for joint unmixing and segmentation of hyperspectral images |
title_full_unstemmed |
Markov random fields for joint unmixing and segmentation of hyperspectral images |
title_sort |
markov random fields for joint unmixing and segmentation of hyperspectral images |
publisher |
HAL CCSD |
publishDate |
2010 |
url |
https://hal.science/hal-04248398 https://doi.org/10.1109/WHISPERS.2010.5594841 |
op_coverage |
Reykjavík, Iceland |
long_lat |
ENVELOPE(161.983,161.983,-78.000,-78.000) |
geographic |
Handle The Reykjavík |
geographic_facet |
Handle The Reykjavík |
genre |
Iceland Reykjavík Reykjavík |
genre_facet |
Iceland Reykjavík Reykjavík |
op_source |
2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 2nd Workshop on Hyperspectral Image and SIgnal Processing: Evolution in Remote Sensing (WHISPERS 2010) https://hal.science/hal-04248398 2nd Workshop on Hyperspectral Image and SIgnal Processing: Evolution in Remote Sensing (WHISPERS 2010), IEEE, Jun 2010, Reykjavík, Iceland. pp.1--4, ⟨10.1109/WHISPERS.2010.5594841⟩ https://ieeexplore.ieee.org/document/5594841 |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1109/WHISPERS.2010.5594841 ISBN: 978-1-4244-8906-0 hal-04248398 https://hal.science/hal-04248398 doi:10.1109/WHISPERS.2010.5594841 |
op_doi |
https://doi.org/10.1109/WHISPERS.2010.5594841 |
container_title |
2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing |
container_start_page |
1 |
op_container_end_page |
4 |
_version_ |
1786206308971577344 |