Markov random fields for joint unmixing and segmentation of hyperspectral images

(Conférencier invité) International audience This paper studies a new Bayesian algorithm for the unmixing of hyperspectral images. The proposed Bayesian algorithm is based on the well-known linear mixing model (LMM). Spatial correlations between pixels are introduced using hidden variables, or label...

Full description

Bibliographic Details
Published in:2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
Main Authors: Eches, Olivier, Dobigeon, Nicolas, Tourneret, Jean-Yves
Other Authors: Signal et Communications (IRIT-SC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut National Polytechnique (Toulouse) (Toulouse INP), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Télécommunications Spatiales et Aéronautiques - Telecommunications for Space ant Aeronautics (TéSA), Laboratoire de recherche coopératif dans les télécommunications spatiales et aéronautiques (TESA), IEEE
Format: Conference Object
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.science/hal-04248398
https://doi.org/10.1109/WHISPERS.2010.5594841
Description
Summary:(Conférencier invité) International audience This paper studies a new Bayesian algorithm for the unmixing of hyperspectral images. The proposed Bayesian algorithm is based on the well-known linear mixing model (LMM). Spatial correlations between pixels are introduced using hidden variables, or labels, and modeled via a Potts-Markov random field. We assume that the pure materials (or endmembers) contained in the image are known a priori or have been extracted by using an endmember extraction algorithm. The mixture coefficients (referred to as abundances) of the whole hyperspectral image are then estimated by using a hierarchical Bayesian algorithm. A reparametrization of the abundances is considered to handle the physical constraints associated to these parameters. Appropriate prior distributions are assigned to the other parameters and hyperparameters associated to the proposed model. To alleviate the complexity of the resulting joint distribution, a hybrid Gibbs algorithm is developed, allowing one to generate samples that are asymptotically distributed according to the full posterior distribution of interest. The generated samples are finally used to estimate the unknown model parameters. Simulations on synthetic data illustrate the performance of the proposed method.