Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment

International audience Abstract. The assimilation of data from Earth observation satellites into numerical models is considered to be the path forward to estimate snow cover distribution in mountain catchments, providing accurate information on the mountainous snow water equivalent (SWE). The land s...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Alonso-González, Esteban, Gascoin, Simon, Arioli, Sara, Picard, Ghislain
Other Authors: Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04241860
https://hal.science/hal-04241860/document
https://hal.science/hal-04241860/file/tc-17-3329-2023.pdf
https://doi.org/10.5194/tc-17-3329-2023
id ftccsdartic:oai:HAL:hal-04241860v1
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
spellingShingle [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
Alonso-González, Esteban
Gascoin, Simon
Arioli, Sara
Picard, Ghislain
Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
topic_facet [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
description International audience Abstract. The assimilation of data from Earth observation satellites into numerical models is considered to be the path forward to estimate snow cover distribution in mountain catchments, providing accurate information on the mountainous snow water equivalent (SWE). The land surface temperature (LST) can be observed from space, but its potential to improve SWE simulations remains underexplored. This is likely due to the insufficient temporal or spatial resolution offered by the current thermal infrared (TIR) missions. However, three planned missions will provide global-scale TIR data at much higher spatiotemporal resolution in the coming years. To investigate the value of TIR data to improve SWE estimation, we developed a synthetic data assimilation (DA) experiment at five snow-dominated sites covering a latitudinal gradient in the Northern Hemisphere. We generated synthetic true LST and SWE series by forcing an energy balance snowpack model with the ERA5-Land reanalysis. We used this synthetic true LST to recover the synthetic true SWE from a degraded version of ERA5-Land. We defined different observation scenarios to emulate the revisiting times of Landsat 8 (16 d) and the Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA) (3 d) while accounting for cloud cover. We replicated the experiments 100 times at each experimental site to assess the robustness of the assimilation process with respect to cloud cover under both revisiting scenarios. We performed the assimilation using two different approaches: a sequential scheme (particle filter) and a smoother (particle batch smoother). The results show that LST DA using the smoother reduced the normalized root mean square error (nRMSE) of the SWE simulations from 61 % (open loop) to 17 % and 13 % for 16 d revisit and 3 d revisit respectively in the absence of clouds. We found similar but higher nRMSE values by removing observations due to cloud cover but with a substantial increase in the standard ...
author2 Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
format Article in Journal/Newspaper
author Alonso-González, Esteban
Gascoin, Simon
Arioli, Sara
Picard, Ghislain
author_facet Alonso-González, Esteban
Gascoin, Simon
Arioli, Sara
Picard, Ghislain
author_sort Alonso-González, Esteban
title Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
title_short Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
title_full Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
title_fullStr Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
title_full_unstemmed Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
title_sort exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04241860
https://hal.science/hal-04241860/document
https://hal.science/hal-04241860/file/tc-17-3329-2023.pdf
https://doi.org/10.5194/tc-17-3329-2023
genre The Cryosphere
genre_facet The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-04241860
The Cryosphere, 2023, 17 (8), pp.3329-3342. ⟨10.5194/tc-17-3329-2023⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-17-3329-2023
hal-04241860
https://hal.science/hal-04241860
https://hal.science/hal-04241860/document
https://hal.science/hal-04241860/file/tc-17-3329-2023.pdf
doi:10.5194/tc-17-3329-2023
WOS: 001050001700001
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-17-3329-2023
container_title The Cryosphere
container_volume 17
container_issue 8
container_start_page 3329
op_container_end_page 3342
_version_ 1789973788109045760
spelling ftccsdartic:oai:HAL:hal-04241860v1 2024-02-04T10:04:57+01:00 Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment Alonso-González, Esteban Gascoin, Simon Arioli, Sara Picard, Ghislain Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) 2023 https://hal.science/hal-04241860 https://hal.science/hal-04241860/document https://hal.science/hal-04241860/file/tc-17-3329-2023.pdf https://doi.org/10.5194/tc-17-3329-2023 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-17-3329-2023 hal-04241860 https://hal.science/hal-04241860 https://hal.science/hal-04241860/document https://hal.science/hal-04241860/file/tc-17-3329-2023.pdf doi:10.5194/tc-17-3329-2023 WOS: 001050001700001 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04241860 The Cryosphere, 2023, 17 (8), pp.3329-3342. ⟨10.5194/tc-17-3329-2023⟩ [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2023 ftccsdartic https://doi.org/10.5194/tc-17-3329-2023 2024-01-06T23:28:25Z International audience Abstract. The assimilation of data from Earth observation satellites into numerical models is considered to be the path forward to estimate snow cover distribution in mountain catchments, providing accurate information on the mountainous snow water equivalent (SWE). The land surface temperature (LST) can be observed from space, but its potential to improve SWE simulations remains underexplored. This is likely due to the insufficient temporal or spatial resolution offered by the current thermal infrared (TIR) missions. However, three planned missions will provide global-scale TIR data at much higher spatiotemporal resolution in the coming years. To investigate the value of TIR data to improve SWE estimation, we developed a synthetic data assimilation (DA) experiment at five snow-dominated sites covering a latitudinal gradient in the Northern Hemisphere. We generated synthetic true LST and SWE series by forcing an energy balance snowpack model with the ERA5-Land reanalysis. We used this synthetic true LST to recover the synthetic true SWE from a degraded version of ERA5-Land. We defined different observation scenarios to emulate the revisiting times of Landsat 8 (16 d) and the Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA) (3 d) while accounting for cloud cover. We replicated the experiments 100 times at each experimental site to assess the robustness of the assimilation process with respect to cloud cover under both revisiting scenarios. We performed the assimilation using two different approaches: a sequential scheme (particle filter) and a smoother (particle batch smoother). The results show that LST DA using the smoother reduced the normalized root mean square error (nRMSE) of the SWE simulations from 61 % (open loop) to 17 % and 13 % for 16 d revisit and 3 d revisit respectively in the absence of clouds. We found similar but higher nRMSE values by removing observations due to cloud cover but with a substantial increase in the standard ... Article in Journal/Newspaper The Cryosphere Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) The Cryosphere 17 8 3329 3342