The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a threephase project. The first two phases were dedica...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Basili, Roberto, Brizuela, Beatriz, Herrero, Andre, Iqbal, Sarfraz, Lorito, Stefano, Maesano, Francesco Emanuele, Murphy, Shane, Perfetti, Paolo, Romano, Fabrizio, Scala, Antonio, Selva, Jacopo, Taroni, Matteo, Tiberti, Mara Monica, Thio, Hong Kie, Tonini, Roberto, Volpe, Manuela, Glimsdal, Sylfest, Harbitz, Carl Bonnevie, Lovholt, Finn, Baptista, Maria Ana, Carrilho, Fernando, Matias, Luis Manuel, Omira, Rachid, Babeyko, Andrey, Hoechner, Andreas, Gurbuz, Mucahit, Pekcan, Onur, Yalciner, Ahmet, Canals, Miquel, Lastras, Galderic, Agalos, Apostolos, Papadopoulos, Gerassimos, Triantafyllou, Ioanna, Benchekroun, Sabah, Agrebi Jaouadi, Hedi, Ben Abdallah, Samir, Bouallegue, Atef, Hamdi, Hassene, Oueslati, Foued, Amato, Alessandro, Armigliato, Alberto, Behrens, Joern, Davies, Gareth, Di Bucci, Daniela, Dolce, Mauro, Geist, Eric, Gonzalez Vida, Jose Manuel, Gonzalez, Mauricio, Macias Sanchez, Jorge, Meletti, Carlo, Ozer Sozdinler, Ceren, Pagani, Marco, Parsons, Tom, Polet, Jascha, Power, William, Sorensen, Mathilde, Zaytsev, Andrey
Other Authors: Laboratoire Aléas géologiques et Dynamique sédimentaire (LAD), Géosciences Marines (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-04203429
https://doi.org/10.3389/feart.2020.616594
Description
Summary:The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a threephase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models' weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (P01) distributed at an average spacing of -20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP approximate to 2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM1 8 results and documentation are available through the ...