The global nature of the Holocene thermal maximum in transient coupled climate model simulations
International audience Proxy records indicate that both the timing and magnitude of the Holocene thermal maximum (HTM) varied considerably from place to place. In some regions the timing coincided with the orbitally forced summer insolation maximum in the earliest Holocene, but in other areas (e.g.,...
Main Authors: | , , , , , |
---|---|
Other Authors: | , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://hal.science/hal-04113685 |
id |
ftccsdartic:oai:HAL:hal-04113685v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-04113685v1 2023-06-18T03:36:06+02:00 The global nature of the Holocene thermal maximum in transient coupled climate model simulations Renssen, H. Seppä, H. Heiri, O. Roche, D. M. Goosse, H. Fichefet, T. Laboratoire des Sciences du Climat et de l'Environnement (LSCE) Commissariat à l'énergie atomique et aux énergies alternatives (CEA) à renseigner, Unknown Region 2023-06-01 https://hal.science/hal-04113685 en eng HAL CCSD hal-04113685 https://hal.science/hal-04113685 BIBCODE: 2009EGUGA.11.7959R EGU General Assembly 2009 https://hal.science/hal-04113685 EGU General Assembly 2009, 0000, à renseigner, Unknown Region. pp.7959 [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/conferenceObject Conference papers 2023 ftccsdartic 2023-06-03T23:50:40Z International audience Proxy records indicate that both the timing and magnitude of the Holocene thermal maximum (HTM) varied considerably from place to place. In some regions the timing coincided with the orbitally forced summer insolation maximum in the earliest Holocene, but in other areas (e.g., Northern Canada, Southern Greenland, northern Eurasia) the thermal maximum occurred several thousand years later. The spatial variation in HTM timing and magnitude suggests the involvement of additional forcings and feedbacks. It is likely that the remnant Laurentide Icesheet (LIS) played an important role. Two important effects of the LIS on the early Holocene climate can be distinguished. First, the actual presence of the ice, with its relatively high surface albedo and an additional elevation, potentially acting as a topographic barrier. Second, melt water of the LIS drained into the oceans, causing the surface ocean to be relatively fresh in some areas, with potential effects on the ocean circulation. Indeed, paleoceanographic evidence suggests that deep convection in the Labrador Sea only started after most of the LIS was gone at about 8 ka. We have studied the global nature of the HTM in several transient experiments covering the last 9000 years, performed with the coupled atmosphere-ocean-vegetation model LOVECLIM. In these experiments, we consider the influence of the variations in orbital parameters and atmospheric greenhouse gases and the early-Holocene LIS deglaciation. Considering the LIS deglaciation, we quantified separately the impacts of the background melt-water fluxes and the changes in topography and surface albedo. We analyse the timing and magnitude of the HTM in several key regions, such as Europe, Greenland, North Atlantic region, Antarctica, North America, and East Asia. Conference Object Antarc* Antarctica Greenland Labrador Sea North Atlantic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Canada Greenland |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
[SDU]Sciences of the Universe [physics] |
spellingShingle |
[SDU]Sciences of the Universe [physics] Renssen, H. Seppä, H. Heiri, O. Roche, D. M. Goosse, H. Fichefet, T. The global nature of the Holocene thermal maximum in transient coupled climate model simulations |
topic_facet |
[SDU]Sciences of the Universe [physics] |
description |
International audience Proxy records indicate that both the timing and magnitude of the Holocene thermal maximum (HTM) varied considerably from place to place. In some regions the timing coincided with the orbitally forced summer insolation maximum in the earliest Holocene, but in other areas (e.g., Northern Canada, Southern Greenland, northern Eurasia) the thermal maximum occurred several thousand years later. The spatial variation in HTM timing and magnitude suggests the involvement of additional forcings and feedbacks. It is likely that the remnant Laurentide Icesheet (LIS) played an important role. Two important effects of the LIS on the early Holocene climate can be distinguished. First, the actual presence of the ice, with its relatively high surface albedo and an additional elevation, potentially acting as a topographic barrier. Second, melt water of the LIS drained into the oceans, causing the surface ocean to be relatively fresh in some areas, with potential effects on the ocean circulation. Indeed, paleoceanographic evidence suggests that deep convection in the Labrador Sea only started after most of the LIS was gone at about 8 ka. We have studied the global nature of the HTM in several transient experiments covering the last 9000 years, performed with the coupled atmosphere-ocean-vegetation model LOVECLIM. In these experiments, we consider the influence of the variations in orbital parameters and atmospheric greenhouse gases and the early-Holocene LIS deglaciation. Considering the LIS deglaciation, we quantified separately the impacts of the background melt-water fluxes and the changes in topography and surface albedo. We analyse the timing and magnitude of the HTM in several key regions, such as Europe, Greenland, North Atlantic region, Antarctica, North America, and East Asia. |
author2 |
Laboratoire des Sciences du Climat et de l'Environnement (LSCE) Commissariat à l'énergie atomique et aux énergies alternatives (CEA) |
format |
Conference Object |
author |
Renssen, H. Seppä, H. Heiri, O. Roche, D. M. Goosse, H. Fichefet, T. |
author_facet |
Renssen, H. Seppä, H. Heiri, O. Roche, D. M. Goosse, H. Fichefet, T. |
author_sort |
Renssen, H. |
title |
The global nature of the Holocene thermal maximum in transient coupled climate model simulations |
title_short |
The global nature of the Holocene thermal maximum in transient coupled climate model simulations |
title_full |
The global nature of the Holocene thermal maximum in transient coupled climate model simulations |
title_fullStr |
The global nature of the Holocene thermal maximum in transient coupled climate model simulations |
title_full_unstemmed |
The global nature of the Holocene thermal maximum in transient coupled climate model simulations |
title_sort |
global nature of the holocene thermal maximum in transient coupled climate model simulations |
publisher |
HAL CCSD |
publishDate |
2023 |
url |
https://hal.science/hal-04113685 |
op_coverage |
à renseigner, Unknown Region |
geographic |
Canada Greenland |
geographic_facet |
Canada Greenland |
genre |
Antarc* Antarctica Greenland Labrador Sea North Atlantic |
genre_facet |
Antarc* Antarctica Greenland Labrador Sea North Atlantic |
op_source |
EGU General Assembly 2009 https://hal.science/hal-04113685 EGU General Assembly 2009, 0000, à renseigner, Unknown Region. pp.7959 |
op_relation |
hal-04113685 https://hal.science/hal-04113685 BIBCODE: 2009EGUGA.11.7959R |
_version_ |
1769004769169375232 |