Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model

International audience Surface temperatures in the Arctic have increased more than in any other region over the past few decades. A better understanding of the processes governing this warming, including the role of short-lived greenhouse gases, is therefore urgently required. During summer 2008, th...

Full description

Bibliographic Details
Main Authors: Monks, S., Arnold, S., Chipperfield, M., Turquety, S., Ancellet, G., Law, K., Schlager, H.
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Conference Object
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04113667
id ftccsdartic:oai:HAL:hal-04113667v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-04113667v1 2023-06-18T03:38:46+02:00 Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model Monks, S. Arnold, S. Chipperfield, M. Turquety, S. Ancellet, G. Law, K. Schlager, H. Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) à renseigner, Unknown Region 2023-06-01 https://hal.science/hal-04113667 en eng HAL CCSD hal-04113667 https://hal.science/hal-04113667 BIBCODE: 2009EGUGA.11.9656M EGU General Assembly 2009 https://hal.science/hal-04113667 EGU General Assembly 2009, 0000, à renseigner, Unknown Region. pp.9656 [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/conferenceObject Conference papers 2023 ftccsdartic 2023-06-03T23:50:40Z International audience Surface temperatures in the Arctic have increased more than in any other region over the past few decades. A better understanding of the processes governing this warming, including the role of short-lived greenhouse gases, is therefore urgently required. During summer 2008, the POLARCAT campaign aimed to collect an extensive gas-phase and aerosol dataset within the Arctic troposphere, which will aid the evaluation of our understanding of oxidant photochemistry and aerosol processing in the region. Previous comparisons of global chemical transport models have shown that they exhibit large variability in their Arctic chemical budgets, indicating that the processes controlling Arctic tropospheric composition are not well understood or represented within models. Here, we will use new trace-gas observations from the French ATR and German DLR Falcon aircraft during the POLARCAT experiment to evaluate the ability of a global chemical transport model (TOMCAT) to simulate the summertime transport of pollutants to the Arctic, and their impact on oxidant budgets. In particular, we aim to quantify the impact of anthropogenic and biomass burning sources on the Arctic tropospheric ozone budget. Initial results show that the model underestimates observed concentrations of CO which has led to a re-evaluation of the different sources of CO to the region. Model performance in the Arctic is highly sensitive to the treatment of boreal biomass burning emissions. Boreal biomass burning plumes were sampled frequently over the course of the campaign therefore accurate representation of emission injection heights and fire locations is essential. Model CO is improved with real-time satellite derived daily biomass burning emissions, however large uncertainties in these emissions result in large variability in the Arctic CO budget. We will also present results on the ability of the model to capture pollution transport pathways to the Arctic and contributions to the oxidant and NOy budgets from different sources. Conference Object Arctic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Monks, S.
Arnold, S.
Chipperfield, M.
Turquety, S.
Ancellet, G.
Law, K.
Schlager, H.
Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Surface temperatures in the Arctic have increased more than in any other region over the past few decades. A better understanding of the processes governing this warming, including the role of short-lived greenhouse gases, is therefore urgently required. During summer 2008, the POLARCAT campaign aimed to collect an extensive gas-phase and aerosol dataset within the Arctic troposphere, which will aid the evaluation of our understanding of oxidant photochemistry and aerosol processing in the region. Previous comparisons of global chemical transport models have shown that they exhibit large variability in their Arctic chemical budgets, indicating that the processes controlling Arctic tropospheric composition are not well understood or represented within models. Here, we will use new trace-gas observations from the French ATR and German DLR Falcon aircraft during the POLARCAT experiment to evaluate the ability of a global chemical transport model (TOMCAT) to simulate the summertime transport of pollutants to the Arctic, and their impact on oxidant budgets. In particular, we aim to quantify the impact of anthropogenic and biomass burning sources on the Arctic tropospheric ozone budget. Initial results show that the model underestimates observed concentrations of CO which has led to a re-evaluation of the different sources of CO to the region. Model performance in the Arctic is highly sensitive to the treatment of boreal biomass burning emissions. Boreal biomass burning plumes were sampled frequently over the course of the campaign therefore accurate representation of emission injection heights and fire locations is essential. Model CO is improved with real-time satellite derived daily biomass burning emissions, however large uncertainties in these emissions result in large variability in the Arctic CO budget. We will also present results on the ability of the model to capture pollution transport pathways to the Arctic and contributions to the oxidant and NOy budgets from different sources.
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Conference Object
author Monks, S.
Arnold, S.
Chipperfield, M.
Turquety, S.
Ancellet, G.
Law, K.
Schlager, H.
author_facet Monks, S.
Arnold, S.
Chipperfield, M.
Turquety, S.
Ancellet, G.
Law, K.
Schlager, H.
author_sort Monks, S.
title Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model
title_short Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model
title_full Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model
title_fullStr Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model
title_full_unstemmed Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model
title_sort investigating long-range transport of pollution to the arctic troposphere using aircraft observations and a global chemical transport model
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04113667
op_coverage à renseigner, Unknown Region
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source EGU General Assembly 2009
https://hal.science/hal-04113667
EGU General Assembly 2009, 0000, à renseigner, Unknown Region. pp.9656
op_relation hal-04113667
https://hal.science/hal-04113667
BIBCODE: 2009EGUGA.11.9656M
_version_ 1769003628194955264