AMOC stability and diverging response to Arctic sea ice decline in two climate models

International audience This study compares the impacts of Arctic sea ice decline on the Atlantic Meridional Overturning Circulation (AMOC) in two configurations of the Community Earth System Model (CESM) with different horizontal resolution. In a suite of model experiments we impose radiative imbala...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Li, Hui, Fedorov, Alexey V., Liu, Wei
Other Authors: National Center for Atmospheric Research Boulder (NCAR), Yale University New Haven, Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of California Riverside (UC Riverside), University of California (UC)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03662329
https://hal.science/hal-03662329/document
https://hal.science/hal-03662329/file/1520-0442-JCLI-D-20-0572.1.pdf
https://doi.org/10.1175/JCLI-D-20-0572.1
Description
Summary:International audience This study compares the impacts of Arctic sea ice decline on the Atlantic Meridional Overturning Circulation (AMOC) in two configurations of the Community Earth System Model (CESM) with different horizontal resolution. In a suite of model experiments we impose radiative imbalance at the ice surface, replicating a loss of sea ice cover comparable to the observed during 1979-2014, and find dramatic differences in the AMOC response between the two models. In the lower-resolution configuration, the AMOC weakens by about one third over the first 100 years, approaching a new quasi-equilibrium. By contrast, in the higher-resolution configuration, the AMOC weakens by ~10% during the first 20-30 years followed by a full recovery driven by invigorated deep water formation in the Labrador Sea and adjacent regions. We investigate these differences using a diagnostic AMOC stability indicator, which reflects the AMOC freshwater transport in and out of the basin and hence the strength of the basin-scale salt-advection feedback. This indicator suggests that the AMOC in the lower-resolution model is less stable and more sensitive to surface perturbations, as confirmed by hosing experiments mimicking Arctic freshening due to sea ice decline. Differences between the models’ mean states, including the Atlantic mean surface freshwater fluxes, control the differences in AMOC stability. Our results demonstrate that the AMOC stability indicator is indeed useful for evaluating AMOC sensitivity to perturbations. Finally, we emphasize that, despite the differences in the long-term adjustment, both models simulate a multi-decadal AMOC weakening caused by Arctic sea ice decline, relevant to climate change.