A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau

International audience Long-term and high-quality surface soil moisture (SSM) and root-zone soil moisture (RZSM) data is crucial for understanding the land-atmosphere interactions of the Qinghai-Tibet Plateau (QTP). More than 40% of QTP is covered by permafrost, yet few studies have evaluated the ac...

Full description

Bibliographic Details
Published in:Remote Sensing of Environment
Main Authors: Xing, Zanpin, Fan, Lei, Zhao, Lin, de Lannoy, Gabrielle, Frappart, Frédéric, Peng, Jian, Li, Xiaojun, Zeng, Jiangyuan, Al-Yaari, Amen, Yang, Kun, Zhao, Tianjie, Shi, Jiancheng, Wang, Mengjia, Liu, Xiangzhuo, Hu, Guojie, Xiao, Yao, Du, Erji, Li, Ren, Qiao, Yongping, Shi, Jianzong, Wen, Jianguang, J.-P., Wigneron
Other Authors: University of Chinese Academy of Sciences Beijing (UCAS), Southwest University Chongqing, Nanjing University of Science and Technology (NJUST), Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Leipzig University, Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Chinese Academy of Sciences Beijing (CAS), Tsinghua University Beijing (THU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.inrae.fr/hal-03612873
https://doi.org/10.1016/j.rse.2021.112666
Description
Summary:International audience Long-term and high-quality surface soil moisture (SSM) and root-zone soil moisture (RZSM) data is crucial for understanding the land-atmosphere interactions of the Qinghai-Tibet Plateau (QTP). More than 40% of QTP is covered by permafrost, yet few studies have evaluated the accuracy of SSM and RZSM products derived from microwave satellite, land surface models (LSMs) and reanalysis over that region. This study tries to address this gap by evaluating a range of satellite and reanalysis estimates of SSM and RZSM in the thawed soil overlaying permafrost in the QTP, using in-situ measurements from sixteen stations. Here, seven SSM products were evaluated: Soil Moisture Active Passive L3 (SMAP L3) and L4 (SMAP-L4), Soil Moisture and Ocean Salinity in version IC (SMOS IC), Land Parameter Retrieval Model (LPRM) Advanced Microwave Scanning Radiometer 2 (AMSR2), European Space Agency Climate Change Initiative (ESA CCI), Advanced Scatterometer (ASCAT), and the fifth generation of the land component of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERAS-Land). We also evaluated three RZSM products from SMAP-L4, ERA5-Land, and the Noah land surface model driven by Global Land Data Assimilation System (GLDAS-Noah). The assessment was conducted using five statistical metrics, i. e. Pearson correlation coefficient (R), bias, slope, Root Mean Square Error (RMSE), and unbiased RMSE (ubRMSE) between SSM or RZSM products and in-situ measurements. Our results showed that the ESA CCI, SMAP-L4 and SMOS-IC SSM products outperformed the other SSM products, indicated by higher correlation coefficients (R) (with a median R value of 0.63, 0.44 and 0.57, respectively) and lower ubRMSE (with a median ubRMSE value of 0.05, 0.04 and 0.07 m(3)/m(3), respectively). Yet, SSM overestimation was found for all SSM products. This could be partly attributed to ancillary data used in the retrieval (e.g. overestimation of land surface temperature for SMAP-L3) and to the fact that the products ...