Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification

International audience The amplitude of the atmospheric CO2 seasonal cycle has increased by 30 to 50% in the Northern Hemisphere (NH) since the 1960s, suggesting widespread ecological changes in the northern extratropics. However, substantial uncertainty remains in the continental and regional drive...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Lin, Xin, Rogers, Brendan M., Sweeney, Colm O., Chevallier, Frédéric, Arshinov, Mikhail Yu, Dlugokencky, Edward J., Machida, Toshinobu, Sasakawa, Motoki, Tans, Pieter P., Keppel-Aleks, Gretchen
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), National Aeronautics and Space Administration, NASA: NNX17AE13G, NNX17AC61A, ACKNOWLEDGMENTS. This study was funded by a NASA Carbon Cycle Science and Arctic-Boreal Vulnerability Experiment (ABoVE) grant (NNX17AE13G) to X.L., G.K.-A., and B.M.R., as well as a NASA ABoVE grant (NNX17AC61A) to C.S. M.S. acknowledges financial support by the Global Environmental Research Coordination System from Ministry of the Environment of Japan. We thank data providers of two CO2 inversion products: CAMS version 17r1 from European Centre for Medium-Range Weather Forecast and CarbonTracker CT2017 provided by NOAA’s Global Monitoring Laboratory, Boulder, CO. We are grateful to the GEOS-Chem model development group and the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) development group. We also thank L. Birch for valuable discussions. This research was supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03032371
https://hal.archives-ouvertes.fr/hal-03032371/document
https://hal.archives-ouvertes.fr/hal-03032371/file/21079.full.pdf
https://doi.org/10.1073/pnas.1914135117
id ftccsdartic:oai:HAL:hal-03032371v1
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic Amplification
Arctic-boreal
Carbon dioxide
Global change
Seasonal cycle
[SDV]Life Sciences [q-bio]
spellingShingle Amplification
Arctic-boreal
Carbon dioxide
Global change
Seasonal cycle
[SDV]Life Sciences [q-bio]
Lin, Xin
Rogers, Brendan M.
Sweeney, Colm O.
Chevallier, Frédéric
Arshinov, Mikhail Yu
Dlugokencky, Edward J.
Machida, Toshinobu
Sasakawa, Motoki
Tans, Pieter P.
Keppel-Aleks, Gretchen
Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification
topic_facet Amplification
Arctic-boreal
Carbon dioxide
Global change
Seasonal cycle
[SDV]Life Sciences [q-bio]
description International audience The amplitude of the atmospheric CO2 seasonal cycle has increased by 30 to 50% in the Northern Hemisphere (NH) since the 1960s, suggesting widespread ecological changes in the northern extratropics. However, substantial uncertainty remains in the continental and regional drivers of this prominent amplitude increase. Here we present a quantitative regional attribution of CO2 seasonal amplification over the past 4 decades, using a tagged atmospheric transport model prescribed with observationally constrained fluxes. We find that seasonal flux changes in Siberian and temperate ecosystems together shape the observed amplitude increases in the NH. At the surface of northern high latitudes, enhanced seasonal carbon exchange in Siberia is the dominant contributor (followed by temperate ecosystems). Arctic-boreal North America shows much smaller changes in flux seasonality and has only localized impacts. These continental contrasts, based on an atmospheric approach, corroborate heterogeneous vegetation greening and browning trends from field and remote-sensing observations, providing independent evidence for regionally divergent ecological responses and carbon dynamics to global change drivers. Over surface midlatitudes and throughout the midtroposphere, increased seasonal carbon exchange in temperate ecosystems is the dominant contributor to CO2 amplification, albeit with considerable contributions from Siberia. Representing the mechanisms that control the high-latitude asymmetry in flux amplification found in this study should be an important goal for mechanistic land surface models moving forward.
author2 Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
National Aeronautics and Space Administration, NASA: NNX17AE13G, NNX17AC61A
ACKNOWLEDGMENTS. This study was funded by a NASA Carbon Cycle Science and Arctic-Boreal Vulnerability Experiment (ABoVE) grant (NNX17AE13G) to X.L., G.K.-A., and B.M.R., as well as a NASA ABoVE grant (NNX17AC61A) to C.S. M.S. acknowledges financial support by the Global Environmental Research Coordination System from Ministry of the Environment of Japan. We thank data providers of two CO2 inversion products: CAMS version 17r1 from European Centre for Medium-Range Weather Forecast and CarbonTracker CT2017 provided by NOAA’s Global Monitoring Laboratory, Boulder, CO. We are grateful to the GEOS-Chem model development group and the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) development group. We also thank L. Birch for valuable discussions. This research was supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.
format Article in Journal/Newspaper
author Lin, Xin
Rogers, Brendan M.
Sweeney, Colm O.
Chevallier, Frédéric
Arshinov, Mikhail Yu
Dlugokencky, Edward J.
Machida, Toshinobu
Sasakawa, Motoki
Tans, Pieter P.
Keppel-Aleks, Gretchen
author_facet Lin, Xin
Rogers, Brendan M.
Sweeney, Colm O.
Chevallier, Frédéric
Arshinov, Mikhail Yu
Dlugokencky, Edward J.
Machida, Toshinobu
Sasakawa, Motoki
Tans, Pieter P.
Keppel-Aleks, Gretchen
author_sort Lin, Xin
title Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification
title_short Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification
title_full Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification
title_fullStr Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification
title_full_unstemmed Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification
title_sort siberian and temperate ecosystems shape northern hemisphere atmospheric co2 seasonal amplification
publisher HAL CCSD
publishDate 2020
url https://hal.archives-ouvertes.fr/hal-03032371
https://hal.archives-ouvertes.fr/hal-03032371/document
https://hal.archives-ouvertes.fr/hal-03032371/file/21079.full.pdf
https://doi.org/10.1073/pnas.1914135117
long_lat ENVELOPE(164.050,164.050,-74.617,-74.617)
geographic Arctic
Browning
geographic_facet Arctic
Browning
genre Arctic
Siberia
genre_facet Arctic
Siberia
op_source ISSN: 0027-8424
EISSN: 1091-6490
Proceedings of the National Academy of Sciences of the United States of America
https://hal.archives-ouvertes.fr/hal-03032371
Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2020, 117 (35), pp.21079-21087. ⟨10.1073/pnas.1914135117⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1914135117
info:eu-repo/semantics/altIdentifier/pmid/32817563
hal-03032371
https://hal.archives-ouvertes.fr/hal-03032371
https://hal.archives-ouvertes.fr/hal-03032371/document
https://hal.archives-ouvertes.fr/hal-03032371/file/21079.full.pdf
doi:10.1073/pnas.1914135117
PUBMED: 32817563
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1073/pnas.1914135117
container_title Proceedings of the National Academy of Sciences
container_volume 117
container_issue 35
container_start_page 21079
op_container_end_page 21087
_version_ 1766330756066443264
spelling ftccsdartic:oai:HAL:hal-03032371v1 2023-05-15T14:58:38+02:00 Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification Lin, Xin Rogers, Brendan M. Sweeney, Colm O. Chevallier, Frédéric Arshinov, Mikhail Yu Dlugokencky, Edward J. Machida, Toshinobu Sasakawa, Motoki Tans, Pieter P. Keppel-Aleks, Gretchen Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) National Aeronautics and Space Administration, NASA: NNX17AE13G, NNX17AC61A ACKNOWLEDGMENTS. This study was funded by a NASA Carbon Cycle Science and Arctic-Boreal Vulnerability Experiment (ABoVE) grant (NNX17AE13G) to X.L., G.K.-A., and B.M.R., as well as a NASA ABoVE grant (NNX17AC61A) to C.S. M.S. acknowledges financial support by the Global Environmental Research Coordination System from Ministry of the Environment of Japan. We thank data providers of two CO2 inversion products: CAMS version 17r1 from European Centre for Medium-Range Weather Forecast and CarbonTracker CT2017 provided by NOAA’s Global Monitoring Laboratory, Boulder, CO. We are grateful to the GEOS-Chem model development group and the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) development group. We also thank L. Birch for valuable discussions. This research was supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor. 2020-09-01 https://hal.archives-ouvertes.fr/hal-03032371 https://hal.archives-ouvertes.fr/hal-03032371/document https://hal.archives-ouvertes.fr/hal-03032371/file/21079.full.pdf https://doi.org/10.1073/pnas.1914135117 en eng HAL CCSD National Academy of Sciences info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1914135117 info:eu-repo/semantics/altIdentifier/pmid/32817563 hal-03032371 https://hal.archives-ouvertes.fr/hal-03032371 https://hal.archives-ouvertes.fr/hal-03032371/document https://hal.archives-ouvertes.fr/hal-03032371/file/21079.full.pdf doi:10.1073/pnas.1914135117 PUBMED: 32817563 info:eu-repo/semantics/OpenAccess ISSN: 0027-8424 EISSN: 1091-6490 Proceedings of the National Academy of Sciences of the United States of America https://hal.archives-ouvertes.fr/hal-03032371 Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2020, 117 (35), pp.21079-21087. ⟨10.1073/pnas.1914135117⟩ Amplification Arctic-boreal Carbon dioxide Global change Seasonal cycle [SDV]Life Sciences [q-bio] info:eu-repo/semantics/article Journal articles 2020 ftccsdartic https://doi.org/10.1073/pnas.1914135117 2021-12-19T00:19:52Z International audience The amplitude of the atmospheric CO2 seasonal cycle has increased by 30 to 50% in the Northern Hemisphere (NH) since the 1960s, suggesting widespread ecological changes in the northern extratropics. However, substantial uncertainty remains in the continental and regional drivers of this prominent amplitude increase. Here we present a quantitative regional attribution of CO2 seasonal amplification over the past 4 decades, using a tagged atmospheric transport model prescribed with observationally constrained fluxes. We find that seasonal flux changes in Siberian and temperate ecosystems together shape the observed amplitude increases in the NH. At the surface of northern high latitudes, enhanced seasonal carbon exchange in Siberia is the dominant contributor (followed by temperate ecosystems). Arctic-boreal North America shows much smaller changes in flux seasonality and has only localized impacts. These continental contrasts, based on an atmospheric approach, corroborate heterogeneous vegetation greening and browning trends from field and remote-sensing observations, providing independent evidence for regionally divergent ecological responses and carbon dynamics to global change drivers. Over surface midlatitudes and throughout the midtroposphere, increased seasonal carbon exchange in temperate ecosystems is the dominant contributor to CO2 amplification, albeit with considerable contributions from Siberia. Representing the mechanisms that control the high-latitude asymmetry in flux amplification found in this study should be an important goal for mechanistic land surface models moving forward. Article in Journal/Newspaper Arctic Siberia Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Browning ENVELOPE(164.050,164.050,-74.617,-74.617) Proceedings of the National Academy of Sciences 117 35 21079 21087