Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger

International audience We use a basket geothermal heat exchanger during 518 hr to freeze a portion of soil. This field experiment is monitored using time lapse electrical conductivity tomography and a set of 47 in situ temperature sensors. A frozen soil core characterized by negative temperatures an...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Coperey, A, Revil, A, Stutz, B
Other Authors: Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Ice
Online Access:https://hal.archives-ouvertes.fr/hal-03005869
https://hal.archives-ouvertes.fr/hal-03005869/document
https://hal.archives-ouvertes.fr/hal-03005869/file/2019-GRL-Basket%20heat%20exchanger.pdf
https://doi.org/10.1029/2019gl084962
id ftccsdartic:oai:HAL:hal-03005869v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-03005869v1 2023-05-15T16:37:47+02:00 Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger Coperey, A Revil, A Stutz, B Environnements, Dynamiques et Territoires de la Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) 2019-12-17 https://hal.archives-ouvertes.fr/hal-03005869 https://hal.archives-ouvertes.fr/hal-03005869/document https://hal.archives-ouvertes.fr/hal-03005869/file/2019-GRL-Basket%20heat%20exchanger.pdf https://doi.org/10.1029/2019gl084962 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2019gl084962 hal-03005869 https://hal.archives-ouvertes.fr/hal-03005869 https://hal.archives-ouvertes.fr/hal-03005869/document https://hal.archives-ouvertes.fr/hal-03005869/file/2019-GRL-Basket%20heat%20exchanger.pdf doi:10.1029/2019gl084962 info:eu-repo/semantics/OpenAccess ISSN: 0094-8276 EISSN: 1944-8007 Geophysical Research Letters https://hal.archives-ouvertes.fr/hal-03005869 Geophysical Research Letters, American Geophysical Union, 2019, 46, pp.14531 - 14538. &#x27E8;10.1029/2019gl084962&#x27E9; [SDE]Environmental Sciences [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2019 ftccsdartic https://doi.org/10.1029/2019gl084962 2021-09-11T22:49:02Z International audience We use a basket geothermal heat exchanger during 518 hr to freeze a portion of soil. This field experiment is monitored using time lapse electrical conductivity tomography and a set of 47 in situ temperature sensors. A frozen soil core characterized by negative temperatures and low conductivity values (<10 −3 S/m) develops over time. A petrophysical model describing the temperature dependence of the electrical conductivity in freezing conditions is applied to the field data and compared to two laboratory experiments performed with two core samples from the test site. The results show that this petrophysical model can be used to interpret field measurements bridging electrical conductivity to temperature and liquid water content. Plain Language Summary In order to better understand the evolution of permafrost (spatial extent, temperature, and liquid water content distributions), we can use time lapse electrical conductivity tomography. The electrical conductivity of a soil is influenced by water and ice contents, temperature, salinity of the pore water, and the cation exchange capacity of the material. We test a physics-based relationship connecting temperature, ice content, and electrical conductivity. This relationship is tested on two core samples and compared with field observations during a in-situ test experiment. In this experiment, we generated a frozen soil core using a geothermal heat exchanger, and at the same time, we recorded the temperature and electrical conductivity distributions. We found a good consistency between the field data and the model, which means that from the distribution of the electrical conductivity of the frozen soil, we are able to recover its temperature. Article in Journal/Newspaper Ice permafrost Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Geophysical Research Letters 46 24 14531 14538
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDE]Environmental Sciences
[SDU]Sciences of the Universe [physics]
spellingShingle [SDE]Environmental Sciences
[SDU]Sciences of the Universe [physics]
Coperey, A
Revil, A
Stutz, B
Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger
topic_facet [SDE]Environmental Sciences
[SDU]Sciences of the Universe [physics]
description International audience We use a basket geothermal heat exchanger during 518 hr to freeze a portion of soil. This field experiment is monitored using time lapse electrical conductivity tomography and a set of 47 in situ temperature sensors. A frozen soil core characterized by negative temperatures and low conductivity values (<10 −3 S/m) develops over time. A petrophysical model describing the temperature dependence of the electrical conductivity in freezing conditions is applied to the field data and compared to two laboratory experiments performed with two core samples from the test site. The results show that this petrophysical model can be used to interpret field measurements bridging electrical conductivity to temperature and liquid water content. Plain Language Summary In order to better understand the evolution of permafrost (spatial extent, temperature, and liquid water content distributions), we can use time lapse electrical conductivity tomography. The electrical conductivity of a soil is influenced by water and ice contents, temperature, salinity of the pore water, and the cation exchange capacity of the material. We test a physics-based relationship connecting temperature, ice content, and electrical conductivity. This relationship is tested on two core samples and compared with field observations during a in-situ test experiment. In this experiment, we generated a frozen soil core using a geothermal heat exchanger, and at the same time, we recorded the temperature and electrical conductivity distributions. We found a good consistency between the field data and the model, which means that from the distribution of the electrical conductivity of the frozen soil, we are able to recover its temperature.
author2 Environnements, Dynamiques et Territoires de la Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Coperey, A
Revil, A
Stutz, B
author_facet Coperey, A
Revil, A
Stutz, B
author_sort Coperey, A
title Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger
title_short Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger
title_full Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger
title_fullStr Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger
title_full_unstemmed Electrical Conductivity Versus Temperature in Freezing Conditions: A Field Experiment Using a Basket Geothermal Heat Exchanger
title_sort electrical conductivity versus temperature in freezing conditions: a field experiment using a basket geothermal heat exchanger
publisher HAL CCSD
publishDate 2019
url https://hal.archives-ouvertes.fr/hal-03005869
https://hal.archives-ouvertes.fr/hal-03005869/document
https://hal.archives-ouvertes.fr/hal-03005869/file/2019-GRL-Basket%20heat%20exchanger.pdf
https://doi.org/10.1029/2019gl084962
genre Ice
permafrost
genre_facet Ice
permafrost
op_source ISSN: 0094-8276
EISSN: 1944-8007
Geophysical Research Letters
https://hal.archives-ouvertes.fr/hal-03005869
Geophysical Research Letters, American Geophysical Union, 2019, 46, pp.14531 - 14538. &#x27E8;10.1029/2019gl084962&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2019gl084962
hal-03005869
https://hal.archives-ouvertes.fr/hal-03005869
https://hal.archives-ouvertes.fr/hal-03005869/document
https://hal.archives-ouvertes.fr/hal-03005869/file/2019-GRL-Basket%20heat%20exchanger.pdf
doi:10.1029/2019gl084962
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2019gl084962
container_title Geophysical Research Letters
container_volume 46
container_issue 24
container_start_page 14531
op_container_end_page 14538
_version_ 1766028080281812992