Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model

International audience Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: (1) photons are trapped in concavities (multiple reflection effect) an...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Larue, Fanny, Picard, Ghislain, Arnaud, Laurent, Ollivier, Inès, Delcourt, Clément, Lamare, Maxim, Tuzet, François, Revuelto, Jesus, Dumont, Marie
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02944401
https://hal.archives-ouvertes.fr/hal-02944401/document
https://hal.archives-ouvertes.fr/hal-02944401/file/tc-14-1651-2020.pdf
https://doi.org/10.5194/tc-14-1651-2020
id ftccsdartic:oai:HAL:hal-02944401v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-02944401v1 2023-05-15T18:32:14+02:00 Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model Larue, Fanny Picard, Ghislain Arnaud, Laurent Ollivier, Inès Delcourt, Clément Lamare, Maxim Tuzet, François Revuelto, Jesus Dumont, Marie Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS) 2020 https://hal.archives-ouvertes.fr/hal-02944401 https://hal.archives-ouvertes.fr/hal-02944401/document https://hal.archives-ouvertes.fr/hal-02944401/file/tc-14-1651-2020.pdf https://doi.org/10.5194/tc-14-1651-2020 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-1651-2020 hal-02944401 https://hal.archives-ouvertes.fr/hal-02944401 https://hal.archives-ouvertes.fr/hal-02944401/document https://hal.archives-ouvertes.fr/hal-02944401/file/tc-14-1651-2020.pdf doi:10.5194/tc-14-1651-2020 http://creativecommons.org/licenses/by-nd/ info:eu-repo/semantics/OpenAccess CC-BY-ND ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.archives-ouvertes.fr/hal-02944401 The Cryosphere, Copernicus 2020, 14 (5), pp.1651-1672. ⟨10.5194/tc-14-1651-2020⟩ [SDU.OTHER]Sciences of the Universe [physics]/Other info:eu-repo/semantics/article Journal articles 2020 ftccsdartic https://doi.org/10.5194/tc-14-1651-2020 2021-12-05T01:03:48Z International audience Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: (1) photons are trapped in concavities (multiple reflection effect) and (2) when the sun is low, the roughness sides facing the sun experience an overall decrease in the local incidence angle relative to a smooth surface, promoting higher absorption, whilst the other sides have weak contributions because of the increased incidence angle or because they are shadowed (called the effective-angle effect here). This paper aims to quantify the impact of surface roughness on albedo and to assess the respective role of these two effects, with (1) observations over varying amounts of surface roughness and (2) simulations using the new rough surface ray-tracing (RSRT) model, based on a Monte Carlo method for photon transport calculation. The observations include spectral albedo (400-1050 nm) over manually created roughness surfaces with multiple geometrical characteristics. Measurements highlight that even a low fraction of surface roughness features (7 % of the surface) causes an albedo decrease of 0.02 at 1000 nm when the solar zenith angle (θ s) is larger than 50 •. For higher fractions (13 %, 27 % and 63 %), and when the roughness orientation is perpendicular to the sun, the decrease is of 0.03-0.04 at 700 nm and of 0.06-0.10 at 1000 nm. The impact is 20 % lower when roughness orientation is parallel to the sun. The observations are subsequently compared to RSRT simulations. Accounting for surface roughness improves the model observation agreement by a factor of 2 at 700 and 1000 nm (errors of 0.03 and 0.04, respectively) compared to simulations considering a flat smooth surface. The model is used to explore the albedo sensitivity to surface roughness with varying snow properties and illumination conditions. Both multiple reflections and the effective-angle effect have a greater impact with ... Article in Journal/Newspaper The Cryosphere Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) The Cryosphere 14 5 1651 1672
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDU.OTHER]Sciences of the Universe [physics]/Other
spellingShingle [SDU.OTHER]Sciences of the Universe [physics]/Other
Larue, Fanny
Picard, Ghislain
Arnaud, Laurent
Ollivier, Inès
Delcourt, Clément
Lamare, Maxim
Tuzet, François
Revuelto, Jesus
Dumont, Marie
Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
topic_facet [SDU.OTHER]Sciences of the Universe [physics]/Other
description International audience Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: (1) photons are trapped in concavities (multiple reflection effect) and (2) when the sun is low, the roughness sides facing the sun experience an overall decrease in the local incidence angle relative to a smooth surface, promoting higher absorption, whilst the other sides have weak contributions because of the increased incidence angle or because they are shadowed (called the effective-angle effect here). This paper aims to quantify the impact of surface roughness on albedo and to assess the respective role of these two effects, with (1) observations over varying amounts of surface roughness and (2) simulations using the new rough surface ray-tracing (RSRT) model, based on a Monte Carlo method for photon transport calculation. The observations include spectral albedo (400-1050 nm) over manually created roughness surfaces with multiple geometrical characteristics. Measurements highlight that even a low fraction of surface roughness features (7 % of the surface) causes an albedo decrease of 0.02 at 1000 nm when the solar zenith angle (θ s) is larger than 50 •. For higher fractions (13 %, 27 % and 63 %), and when the roughness orientation is perpendicular to the sun, the decrease is of 0.03-0.04 at 700 nm and of 0.06-0.10 at 1000 nm. The impact is 20 % lower when roughness orientation is parallel to the sun. The observations are subsequently compared to RSRT simulations. Accounting for surface roughness improves the model observation agreement by a factor of 2 at 700 and 1000 nm (errors of 0.03 and 0.04, respectively) compared to simulations considering a flat smooth surface. The model is used to explore the albedo sensitivity to surface roughness with varying snow properties and illumination conditions. Both multiple reflections and the effective-angle effect have a greater impact with ...
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Larue, Fanny
Picard, Ghislain
Arnaud, Laurent
Ollivier, Inès
Delcourt, Clément
Lamare, Maxim
Tuzet, François
Revuelto, Jesus
Dumont, Marie
author_facet Larue, Fanny
Picard, Ghislain
Arnaud, Laurent
Ollivier, Inès
Delcourt, Clément
Lamare, Maxim
Tuzet, François
Revuelto, Jesus
Dumont, Marie
author_sort Larue, Fanny
title Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
title_short Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
title_full Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
title_fullStr Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
title_full_unstemmed Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
title_sort snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
publisher HAL CCSD
publishDate 2020
url https://hal.archives-ouvertes.fr/hal-02944401
https://hal.archives-ouvertes.fr/hal-02944401/document
https://hal.archives-ouvertes.fr/hal-02944401/file/tc-14-1651-2020.pdf
https://doi.org/10.5194/tc-14-1651-2020
genre The Cryosphere
genre_facet The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.archives-ouvertes.fr/hal-02944401
The Cryosphere, Copernicus 2020, 14 (5), pp.1651-1672. ⟨10.5194/tc-14-1651-2020⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-1651-2020
hal-02944401
https://hal.archives-ouvertes.fr/hal-02944401
https://hal.archives-ouvertes.fr/hal-02944401/document
https://hal.archives-ouvertes.fr/hal-02944401/file/tc-14-1651-2020.pdf
doi:10.5194/tc-14-1651-2020
op_rights http://creativecommons.org/licenses/by-nd/
info:eu-repo/semantics/OpenAccess
op_rightsnorm CC-BY-ND
op_doi https://doi.org/10.5194/tc-14-1651-2020
container_title The Cryosphere
container_volume 14
container_issue 5
container_start_page 1651
op_container_end_page 1672
_version_ 1766216330456858624