Non-probabilistic fermionic limit shapes

23 pages, 8 figures We study a translational invariant free fermions model in imaginary time, with nearest neighbor and next-nearest neighbor hopping terms, for a class of inhomogeneous boundary conditions. This model is known to give rise to limit shapes and arctic curves, in the absence of the nex...

Full description

Bibliographic Details
Published in:Journal of Statistical Mechanics: Theory and Experiment
Main Authors: Bocini, Saverio, Stéphan, Jean-Marie
Other Authors: Institut Camille Jordan Villeurbanne (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet Saint-Étienne (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Probabilités, statistique, physique mathématique (PSPM), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Università degli Studi di Firenze = University of Florence Firenze (UNIFI), ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018)
Format: Report
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02933352
https://doi.org/10.1088/1742-5468/abcd34
Description
Summary:23 pages, 8 figures We study a translational invariant free fermions model in imaginary time, with nearest neighbor and next-nearest neighbor hopping terms, for a class of inhomogeneous boundary conditions. This model is known to give rise to limit shapes and arctic curves, in the absence of the next-nearest neighbor perturbation. The perturbation considered turns out to not be always positive, that is, the corresponding statistical mechanical model does not always have positive Boltzmann weights. We investigate how the density profile is affected by this nonpositive perturbation. We find that in some regions, the effects of the negative signs are suppressed, and renormalize to zero. However, depending on boundary conditions, new ``crazy regions'' emerge, in which minus signs proliferate, and the density of fermions is not in $[0,1]$ anymore. We provide a simple intuition for such behavior, and compute exactly the density profile both on the lattice and in the scaling limit.