How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area

International audience We demonstrate the effect of an ecosystem differentiated insulation by snow on the soil thermal regime and on the terrestrial soil carbon distribution in the pan‐Arctic area. This is done by means of a sensitivity study performed with the land surface model ORCHIDEE, which fur...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Biogeosciences
Main Authors: Gouttevin, I., Menegoz, M., Domine, F., Krinner, G., Koven, C., Ciais, P., Tarnocai, C., Boike, J.
Other Authors: AgroParisTech, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Lawrence Berkeley National Laboratory Berkeley (LBNL), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Agriculture and Agri-Food Ottawa (AAFC), Alfred Wegener Institute for Polar and Marine Research (AWI)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02929382
https://hal.archives-ouvertes.fr/hal-02929382/document
https://hal.archives-ouvertes.fr/hal-02929382/file/2011JG001916.pdf
https://doi.org/10.1029/2011JG001916
id ftccsdartic:oai:HAL:hal-02929382v1
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
Gouttevin, I.
Menegoz, M.
Domine, F.
Krinner, G.
Koven, C.
Ciais, P.
Tarnocai, C.
Boike, J.
How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
description International audience We demonstrate the effect of an ecosystem differentiated insulation by snow on the soil thermal regime and on the terrestrial soil carbon distribution in the pan‐Arctic area. This is done by means of a sensitivity study performed with the land surface model ORCHIDEE, which furthermore provides a first quantification of this effect. Based on field campaigns reporting higher thermal conductivities and densities for the tundra snowpack than for taiga snow, two distributions of near‐equilibrium soil carbon stocks are computed, one relying on uniform snow thermal properties and the other using ecosystem‐differentiated snow thermal properties. Those modeled distributions strongly depend on soil temperature through decomposition processes. Considering higher insulation by snow in taiga areas induces warmer soil temperatures by up to 12 K in winter at 50 cm depth. This warmer soil signal persists over summer with a temperature difference of up to 4 K at 50 cm depth, especially in areas exhibiting a thick, enduring snow cover. These thermal changes have implications on the modeled soil carbon stocks, which are reduced by 8% in the pan‐Arctic continental area when the vegetation‐induced variations of snow thermal properties are accounted for. This is the result of diverse and spatially heterogeneous ecosystem processes: where higher soil temperatures lift nitrogen limitation on plant productivity, tree plant functional types thrive whereas light limitation and enhanced water stress are the new constrains on lower vegetation, resulting in a reduced net productivity at the pan‐Arctic scale. Concomitantly, higher soil temperatures yield increased respiration rates (+22% over the study area) and result in reduced permafrost extent and deeper active layers which expose greater volumes of soil to microbial decomposition. The three effects combine to produce lower soil carbon stocks in the pan‐Arctic terrestrial area. Our study highlights the role of snow in combination with vegetation in shaping the ...
author2 AgroParisTech
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Lawrence Berkeley National Laboratory Berkeley (LBNL)
ICOS-ATC (ICOS-ATC)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Agriculture and Agri-Food Ottawa (AAFC)
Alfred Wegener Institute for Polar and Marine Research (AWI)
format Article in Journal/Newspaper
author Gouttevin, I.
Menegoz, M.
Domine, F.
Krinner, G.
Koven, C.
Ciais, P.
Tarnocai, C.
Boike, J.
author_facet Gouttevin, I.
Menegoz, M.
Domine, F.
Krinner, G.
Koven, C.
Ciais, P.
Tarnocai, C.
Boike, J.
author_sort Gouttevin, I.
title How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area
title_short How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area
title_full How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area
title_fullStr How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area
title_full_unstemmed How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area
title_sort how the insulating properties of snow affect soil carbon distribution in the continental pan-arctic area
publisher HAL CCSD
publishDate 2012
url https://hal.archives-ouvertes.fr/hal-02929382
https://hal.archives-ouvertes.fr/hal-02929382/document
https://hal.archives-ouvertes.fr/hal-02929382/file/2011JG001916.pdf
https://doi.org/10.1029/2011JG001916
geographic Arctic
geographic_facet Arctic
genre Arctic
permafrost
taiga
Tundra
genre_facet Arctic
permafrost
taiga
Tundra
op_source ISSN: 2169-8953
Journal of Geophysical Research: Biogeosciences
https://hal.archives-ouvertes.fr/hal-02929382
Journal of Geophysical Research: Biogeosciences, American Geophysical Union, 2012, 117 (G2), pp.n/a-n/a. ⟨10.1029/2011JG001916⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JG001916
hal-02929382
https://hal.archives-ouvertes.fr/hal-02929382
https://hal.archives-ouvertes.fr/hal-02929382/document
https://hal.archives-ouvertes.fr/hal-02929382/file/2011JG001916.pdf
doi:10.1029/2011JG001916
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2011JG001916
container_title Journal of Geophysical Research: Biogeosciences
container_volume 117
container_issue G2
container_start_page n/a
op_container_end_page n/a
_version_ 1766321225026502656
spelling ftccsdartic:oai:HAL:hal-02929382v1 2023-05-15T14:50:10+02:00 How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area Gouttevin, I. Menegoz, M. Domine, F. Krinner, G. Koven, C. Ciais, P. Tarnocai, C. Boike, J. AgroParisTech Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Lawrence Berkeley National Laboratory Berkeley (LBNL) ICOS-ATC (ICOS-ATC) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Agriculture and Agri-Food Ottawa (AAFC) Alfred Wegener Institute for Polar and Marine Research (AWI) 2012-06 https://hal.archives-ouvertes.fr/hal-02929382 https://hal.archives-ouvertes.fr/hal-02929382/document https://hal.archives-ouvertes.fr/hal-02929382/file/2011JG001916.pdf https://doi.org/10.1029/2011JG001916 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JG001916 hal-02929382 https://hal.archives-ouvertes.fr/hal-02929382 https://hal.archives-ouvertes.fr/hal-02929382/document https://hal.archives-ouvertes.fr/hal-02929382/file/2011JG001916.pdf doi:10.1029/2011JG001916 info:eu-repo/semantics/OpenAccess ISSN: 2169-8953 Journal of Geophysical Research: Biogeosciences https://hal.archives-ouvertes.fr/hal-02929382 Journal of Geophysical Research: Biogeosciences, American Geophysical Union, 2012, 117 (G2), pp.n/a-n/a. ⟨10.1029/2011JG001916⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2012 ftccsdartic https://doi.org/10.1029/2011JG001916 2021-12-19T00:55:22Z International audience We demonstrate the effect of an ecosystem differentiated insulation by snow on the soil thermal regime and on the terrestrial soil carbon distribution in the pan‐Arctic area. This is done by means of a sensitivity study performed with the land surface model ORCHIDEE, which furthermore provides a first quantification of this effect. Based on field campaigns reporting higher thermal conductivities and densities for the tundra snowpack than for taiga snow, two distributions of near‐equilibrium soil carbon stocks are computed, one relying on uniform snow thermal properties and the other using ecosystem‐differentiated snow thermal properties. Those modeled distributions strongly depend on soil temperature through decomposition processes. Considering higher insulation by snow in taiga areas induces warmer soil temperatures by up to 12 K in winter at 50 cm depth. This warmer soil signal persists over summer with a temperature difference of up to 4 K at 50 cm depth, especially in areas exhibiting a thick, enduring snow cover. These thermal changes have implications on the modeled soil carbon stocks, which are reduced by 8% in the pan‐Arctic continental area when the vegetation‐induced variations of snow thermal properties are accounted for. This is the result of diverse and spatially heterogeneous ecosystem processes: where higher soil temperatures lift nitrogen limitation on plant productivity, tree plant functional types thrive whereas light limitation and enhanced water stress are the new constrains on lower vegetation, resulting in a reduced net productivity at the pan‐Arctic scale. Concomitantly, higher soil temperatures yield increased respiration rates (+22% over the study area) and result in reduced permafrost extent and deeper active layers which expose greater volumes of soil to microbial decomposition. The three effects combine to produce lower soil carbon stocks in the pan‐Arctic terrestrial area. Our study highlights the role of snow in combination with vegetation in shaping the ... Article in Journal/Newspaper Arctic permafrost taiga Tundra Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Journal of Geophysical Research: Biogeosciences 117 G2 n/a n/a