High Arctic wetting reduces permafrost carbon feedbacks to climate warming

International audience The carbon (C) balance of permafrost regions is predicted to be extremely sensitive to climatic changes(1-3). Major uncertainties exist in the rate of permafrost thaw and associated C emissions (33-508 Pg C or 0.04-1.69 degrees C by 2100; refs 2,3) and plant C uptake. In the H...

Full description

Bibliographic Details
Published in:Nature Climate Change
Main Authors: Lupascu, Massimo, Welker, Jeff M., Seibt, Ulrike, Maseyk, Kadmiel, Xu, Xiaomei, Czimczik, Claudia I.
Other Authors: Department of Earth System Science Irvine (ESS), University of California Irvine (UCI), University of California-University of California, University of Alaska Southeast (UAS), Biogéochimie et écologie des milieux continentaux (Bioemco), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of California Los Angeles (UCLA), University of California, US National Science Foundation ARC-0909514, ARC-0909538, European Research Council (ERC) 202835
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2014
Subjects:
Ice
Online Access:https://hal.inrae.fr/hal-02641366
https://doi.org/10.1038/NCLIMATE2058
id ftccsdartic:oai:HAL:hal-02641366v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-02641366v1 2023-05-15T14:49:22+02:00 High Arctic wetting reduces permafrost carbon feedbacks to climate warming Lupascu, Massimo Welker, Jeff M. Seibt, Ulrike Maseyk, Kadmiel Xu, Xiaomei Czimczik, Claudia I. Department of Earth System Science Irvine (ESS) University of California Irvine (UCI) University of California-University of California University of Alaska Southeast (UAS) Biogéochimie et écologie des milieux continentaux (Bioemco) Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) University of California Los Angeles (UCLA) University of California US National Science Foundation ARC-0909514, ARC-0909538 European Research Council (ERC) 202835 2014 https://hal.inrae.fr/hal-02641366 https://doi.org/10.1038/NCLIMATE2058 en eng HAL CCSD Nature Publishing Group info:eu-repo/semantics/altIdentifier/doi/10.1038/NCLIMATE2058 hal-02641366 https://hal.inrae.fr/hal-02641366 doi:10.1038/NCLIMATE2058 PRODINRA: 270718 WOS: 000333666600016 ISSN: 1758-678X EISSN: 1758-6798 Nature Climate Change https://hal.inrae.fr/hal-02641366 Nature Climate Change, Nature Publishing Group, 2014, 4 (1), pp.51-55. ⟨10.1038/NCLIMATE2058⟩ http://www.nature.com/nclimate/index.html [SDV]Life Sciences [q-bio] [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2014 ftccsdartic https://doi.org/10.1038/NCLIMATE2058 2021-11-21T00:48:33Z International audience The carbon (C) balance of permafrost regions is predicted to be extremely sensitive to climatic changes(1-3). Major uncertainties exist in the rate of permafrost thaw and associated C emissions (33-508 Pg C or 0.04-1.69 degrees C by 2100; refs 2,3) and plant C uptake. In the High Arctic, semi-deserts retain unique soil-plant-permafrost interactions(4,5) and heterogeneous soil C pools(6) (>12 Pg C; ref. 7). Owing to its coastal proximity, marked changes are expected for High Arctic tundra(8). With declining summer sea-ice cover(9), these systems are simultaneously exposed to rising temperatures(9), increases in precipitation(10) and permafrost degradation(11). Here we show, using measurements of tundra-atmosphere C fluxes and soil C sources (C-14) at a long-term climate change experiment in northwest Greenland, that warming decreased the summer CO2 sink strength of semi-deserts by up to 55%. In contrast, warming combined with wetting increased the CO2 sink strength by an order of magnitude. Further, wetting while relocating recently assimilated plant C into the deep soil decreased old C loss compared with the warming-only treatment. Consequently, the High Arctic has the potential to remain a strong C sink even as the rest of the permafrost region transitions to a net C source as a result of future global warming. Article in Journal/Newspaper Arctic Climate change Global warming Greenland Ice permafrost Sea ice Tundra Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Greenland Nature Climate Change 4 1 51 55
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [SDV]Life Sciences [q-bio]
[SDE]Environmental Sciences
spellingShingle [SDV]Life Sciences [q-bio]
[SDE]Environmental Sciences
Lupascu, Massimo
Welker, Jeff M.
Seibt, Ulrike
Maseyk, Kadmiel
Xu, Xiaomei
Czimczik, Claudia I.
High Arctic wetting reduces permafrost carbon feedbacks to climate warming
topic_facet [SDV]Life Sciences [q-bio]
[SDE]Environmental Sciences
description International audience The carbon (C) balance of permafrost regions is predicted to be extremely sensitive to climatic changes(1-3). Major uncertainties exist in the rate of permafrost thaw and associated C emissions (33-508 Pg C or 0.04-1.69 degrees C by 2100; refs 2,3) and plant C uptake. In the High Arctic, semi-deserts retain unique soil-plant-permafrost interactions(4,5) and heterogeneous soil C pools(6) (>12 Pg C; ref. 7). Owing to its coastal proximity, marked changes are expected for High Arctic tundra(8). With declining summer sea-ice cover(9), these systems are simultaneously exposed to rising temperatures(9), increases in precipitation(10) and permafrost degradation(11). Here we show, using measurements of tundra-atmosphere C fluxes and soil C sources (C-14) at a long-term climate change experiment in northwest Greenland, that warming decreased the summer CO2 sink strength of semi-deserts by up to 55%. In contrast, warming combined with wetting increased the CO2 sink strength by an order of magnitude. Further, wetting while relocating recently assimilated plant C into the deep soil decreased old C loss compared with the warming-only treatment. Consequently, the High Arctic has the potential to remain a strong C sink even as the rest of the permafrost region transitions to a net C source as a result of future global warming.
author2 Department of Earth System Science Irvine (ESS)
University of California Irvine (UCI)
University of California-University of California
University of Alaska Southeast (UAS)
Biogéochimie et écologie des milieux continentaux (Bioemco)
Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
University of California Los Angeles (UCLA)
University of California
US National Science Foundation ARC-0909514, ARC-0909538
European Research Council (ERC) 202835
format Article in Journal/Newspaper
author Lupascu, Massimo
Welker, Jeff M.
Seibt, Ulrike
Maseyk, Kadmiel
Xu, Xiaomei
Czimczik, Claudia I.
author_facet Lupascu, Massimo
Welker, Jeff M.
Seibt, Ulrike
Maseyk, Kadmiel
Xu, Xiaomei
Czimczik, Claudia I.
author_sort Lupascu, Massimo
title High Arctic wetting reduces permafrost carbon feedbacks to climate warming
title_short High Arctic wetting reduces permafrost carbon feedbacks to climate warming
title_full High Arctic wetting reduces permafrost carbon feedbacks to climate warming
title_fullStr High Arctic wetting reduces permafrost carbon feedbacks to climate warming
title_full_unstemmed High Arctic wetting reduces permafrost carbon feedbacks to climate warming
title_sort high arctic wetting reduces permafrost carbon feedbacks to climate warming
publisher HAL CCSD
publishDate 2014
url https://hal.inrae.fr/hal-02641366
https://doi.org/10.1038/NCLIMATE2058
geographic Arctic
Greenland
geographic_facet Arctic
Greenland
genre Arctic
Climate change
Global warming
Greenland
Ice
permafrost
Sea ice
Tundra
genre_facet Arctic
Climate change
Global warming
Greenland
Ice
permafrost
Sea ice
Tundra
op_source ISSN: 1758-678X
EISSN: 1758-6798
Nature Climate Change
https://hal.inrae.fr/hal-02641366
Nature Climate Change, Nature Publishing Group, 2014, 4 (1), pp.51-55. ⟨10.1038/NCLIMATE2058⟩
http://www.nature.com/nclimate/index.html
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/NCLIMATE2058
hal-02641366
https://hal.inrae.fr/hal-02641366
doi:10.1038/NCLIMATE2058
PRODINRA: 270718
WOS: 000333666600016
op_doi https://doi.org/10.1038/NCLIMATE2058
container_title Nature Climate Change
container_volume 4
container_issue 1
container_start_page 51
op_container_end_page 55
_version_ 1766320425140224000