Non-covalent and covalent immobilization of Candida antarctica Lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2

International audience Candida antarctica B lipase (CAL-B) was immobilized on purified and functionalized multiwalled carbon nanotubes (MWCNTs). Both immobilization routes, physical adsorption and covalent bonding, were investigated. MWCNT functionalization by a non-aggressive oxidation by potassium...

Full description

Bibliographic Details
Published in:Catalysis Today
Main Authors: Bourkaib, Mohamed Chafik, Guiavarc’h, Yann, Chevalot, Isabelle, Delaunay, Stéphane, Gleize, Jerome, Ghanbaja, Jaafar, Valsaque, Fabrice, Berrada, Nawal, Desforges, Alexandre, Vigolo, Brigitte
Other Authors: Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC), Université de Lorraine (UL), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02612257
https://hal.archives-ouvertes.fr/hal-02612257/document
https://hal.archives-ouvertes.fr/hal-02612257/file/CatalToday_draftv10_rev2.pdf
https://doi.org/10.1016/j.cattod.2019.08.046
Description
Summary:International audience Candida antarctica B lipase (CAL-B) was immobilized on purified and functionalized multiwalled carbon nanotubes (MWCNTs). Both immobilization routes, physical adsorption and covalent bonding, were investigated. MWCNT functionalization by a non-aggressive oxidation by potassium permanganate led to an interesting balance between the hydrophilic and the hydrophobic areas of the MWCNT surface; the former being responsible of the good dispersion of MWCNTs in water and the latter having a favorable affinity with CAL-B. The enzyme loadings reached were significant: around 16 wt. % and 21 wt.% for non-covalent and covalent immobilization, respectively. The enzymatic activity was studied with the reaction of O-acylation of geraniol into geranyl acetate by CAL-B in supercritical CO2. Even if a decay in synthesis of geranyl acetate was observed over cycling for both CAL-B@MWCNT catalysts, it was demonstrated that the regioselectivity of CAL-B was unchanged through immobilization on the MWCNT surface for both routes. Interestingly, it was shown that a fully green enzymatic process can be achieved with these prepared CAL-B@MWCNT biocatalyst. Such approach could be transferred to other support/enzyme systems for developing new eco-friendly synthesis processes.