id ftccsdartic:oai:HAL:hal-02414942v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-02414942v1 2023-05-15T17:36:02+02:00 Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation Metref, Sammy Cosme, Emmanuel Le Sommer, Julien Poel, Nora Brankart, Jean-Michel Verron, Jacques Navarro, Laura Institut des Géosciences de l’Environnement (IGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) 2019 https://hal.archives-ouvertes.fr/hal-02414942 https://hal.archives-ouvertes.fr/hal-02414942/document https://hal.archives-ouvertes.fr/hal-02414942/file/Metref-al-2019.pdf https://doi.org/10.3390/rs11111336 en eng HAL CCSD MDPI info:eu-repo/semantics/altIdentifier/doi/10.3390/rs11111336 hal-02414942 https://hal.archives-ouvertes.fr/hal-02414942 https://hal.archives-ouvertes.fr/hal-02414942/document https://hal.archives-ouvertes.fr/hal-02414942/file/Metref-al-2019.pdf doi:10.3390/rs11111336 info:eu-repo/semantics/OpenAccess ISSN: 2072-4292 Remote Sensing https://hal.archives-ouvertes.fr/hal-02414942 Remote Sensing, MDPI, 2019, ⟨10.3390/rs11111336⟩ detrending ensemble kalman filter projection OSSE SWOT correlated errors [SDU]Sciences of the Universe [physics] [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2019 ftccsdartic https://doi.org/10.3390/rs11111336 2021-11-07T01:26:57Z International audience The Surface Water and Ocean Topography (SWOT) mission is a next generation satellite mission expected to provide a 2 km-resolution observation of the sea surface height (SSH) on a two-dimensional swath. Processing SWOT data will be challenging because of the large amount of data, the mismatch between a high spatial resolution and a low temporal resolution, and the observation errors. The present paper focuses on the reduction of the spatially structured errors of SWOT SSH data. It investigates a new error reduction method and assesses its performance in an observing system simulation experiment. The proposed error-reduction method first projects the SWOT SSH onto a subspace spanned by the SWOT spatially structured errors. This projection is removed from the SWOT SSH to obtain a detrended SSH. The detrended SSH is then processed within an ensemble data assimilation analysis to retrieve a full SSH field. In the latter step, the detrending is applied to both the SWOT data and an ensemble of model-simulated SSH fields. Numerical experiments are performed with synthetic SWOT observations and an ensemble from a North Atlantic, 1/60 • simulation of the ocean circulation (NATL60). The data assimilation analysis is carried out with an ensemble Kalman filter. The results are assessed with root mean square errors, power spectrum density, and spatial coherence. They show that a significant part of the large scale SWOT errors is reduced. The filter analysis also reduces the small scale errors and allows for an accurate recovery of the energy of the signal down to 25 km scales. In addition, using the SWOT nadir data to adjust the SSH detrending further reduces the errors. Article in Journal/Newspaper North Atlantic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Remote Sensing 11 11 1336
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic detrending
ensemble kalman filter
projection
OSSE
SWOT
correlated errors
[SDU]Sciences of the Universe [physics]
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle detrending
ensemble kalman filter
projection
OSSE
SWOT
correlated errors
[SDU]Sciences of the Universe [physics]
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Metref, Sammy
Cosme, Emmanuel
Le Sommer, Julien
Poel, Nora
Brankart, Jean-Michel
Verron, Jacques
Navarro, Laura
Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation
topic_facet detrending
ensemble kalman filter
projection
OSSE
SWOT
correlated errors
[SDU]Sciences of the Universe [physics]
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience The Surface Water and Ocean Topography (SWOT) mission is a next generation satellite mission expected to provide a 2 km-resolution observation of the sea surface height (SSH) on a two-dimensional swath. Processing SWOT data will be challenging because of the large amount of data, the mismatch between a high spatial resolution and a low temporal resolution, and the observation errors. The present paper focuses on the reduction of the spatially structured errors of SWOT SSH data. It investigates a new error reduction method and assesses its performance in an observing system simulation experiment. The proposed error-reduction method first projects the SWOT SSH onto a subspace spanned by the SWOT spatially structured errors. This projection is removed from the SWOT SSH to obtain a detrended SSH. The detrended SSH is then processed within an ensemble data assimilation analysis to retrieve a full SSH field. In the latter step, the detrending is applied to both the SWOT data and an ensemble of model-simulated SSH fields. Numerical experiments are performed with synthetic SWOT observations and an ensemble from a North Atlantic, 1/60 • simulation of the ocean circulation (NATL60). The data assimilation analysis is carried out with an ensemble Kalman filter. The results are assessed with root mean square errors, power spectrum density, and spatial coherence. They show that a significant part of the large scale SWOT errors is reduced. The filter analysis also reduces the small scale errors and allows for an accurate recovery of the energy of the signal down to 25 km scales. In addition, using the SWOT nadir data to adjust the SSH detrending further reduces the errors.
author2 Institut des Géosciences de l’Environnement (IGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
format Article in Journal/Newspaper
author Metref, Sammy
Cosme, Emmanuel
Le Sommer, Julien
Poel, Nora
Brankart, Jean-Michel
Verron, Jacques
Navarro, Laura
author_facet Metref, Sammy
Cosme, Emmanuel
Le Sommer, Julien
Poel, Nora
Brankart, Jean-Michel
Verron, Jacques
Navarro, Laura
author_sort Metref, Sammy
title Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation
title_short Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation
title_full Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation
title_fullStr Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation
title_full_unstemmed Reduction of Spatially Structured Errors in Wide-Swath Altimetric Satellite Data Using Data Assimilation
title_sort reduction of spatially structured errors in wide-swath altimetric satellite data using data assimilation
publisher HAL CCSD
publishDate 2019
url https://hal.archives-ouvertes.fr/hal-02414942
https://hal.archives-ouvertes.fr/hal-02414942/document
https://hal.archives-ouvertes.fr/hal-02414942/file/Metref-al-2019.pdf
https://doi.org/10.3390/rs11111336
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 2072-4292
Remote Sensing
https://hal.archives-ouvertes.fr/hal-02414942
Remote Sensing, MDPI, 2019, ⟨10.3390/rs11111336⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.3390/rs11111336
hal-02414942
https://hal.archives-ouvertes.fr/hal-02414942
https://hal.archives-ouvertes.fr/hal-02414942/document
https://hal.archives-ouvertes.fr/hal-02414942/file/Metref-al-2019.pdf
doi:10.3390/rs11111336
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.3390/rs11111336
container_title Remote Sensing
container_volume 11
container_issue 11
container_start_page 1336
_version_ 1766135382746857472