LSCE-FFNN-v1: the reconstruction of surface ocean pCO2
International audience A new feed-forward neural network (FFNN) model is presented to reconstruct surface ocean partial pressure of carbon dioxide (pCO 2) over the global ocean. The model consists of two steps: (1) the reconstruction of pCO 2 climatology, and (2) the reconstruction of pCO 2 anomalie...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2019
|
Subjects: | |
Online Access: | https://hal.sorbonne-universite.fr/hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978/document https://hal.sorbonne-universite.fr/hal-02171978/file/gmd-12-2091-2019.pdf https://doi.org/10.5194/gmd-12-2091-2019 |
id |
ftccsdartic:oai:HAL:hal-02171978v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
spellingShingle |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Denvil-Sommer, Anna Gehlen, Marion Vrac, Mathieu Mejia, Carlos LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 |
topic_facet |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
description |
International audience A new feed-forward neural network (FFNN) model is presented to reconstruct surface ocean partial pressure of carbon dioxide (pCO 2) over the global ocean. The model consists of two steps: (1) the reconstruction of pCO 2 climatology, and (2) the reconstruction of pCO 2 anomalies with respect to the climatology. For the first step, a grid-ded climatology was used as the target, along with sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), chlorophyll a (Chl a), mixed layer depth (MLD), as well as latitude and longitude as predictors. For the second step, data from the Surface Ocean CO 2 Atlas (SO-CAT) provided the target. The same set of predictors was used during step (2) augmented by their anomalies. During each step, the FFNN model reconstructs the nonlinear relationships between pCO 2 and the ocean predictors. It provides monthly surface ocean pCO 2 distributions on a 1 • ×1 • grid for the period from 2001 to 2016. Global ocean pCO 2 was reconstructed with satisfying accuracy compared with independent observational data from SOCAT. However, errors were larger in regions with poor data coverage (e.g., the Indian Ocean, the Southern Ocean and the subpolar Pacific). The model captured the strong interannual variability of surface ocean pCO 2 with reasonable skill over the equatorial Pacific associated with ENSO (the El Niño-Southern Oscillation). Our model was compared to three pCO 2 mapping methods that participated in the Surface Ocean pCO 2 Mapping intercomparison (SOCOM) initiative. We found a good agreement in seasonal and interannual variability between the models over the global ocean. However, important differences still exist at the regional scale, especially in the Southern Hemisphere and, in particular, in the southern Pacific and the Indian Ocean, as these regions suffer from poor data coverage. Large regional uncertainties in reconstructed surface ocean pCO 2 and sea-air CO 2 fluxes have a strong influence on global estimates of CO 2 fluxes ... |
author2 |
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Sorbonne Université (SU) |
format |
Article in Journal/Newspaper |
author |
Denvil-Sommer, Anna Gehlen, Marion Vrac, Mathieu Mejia, Carlos |
author_facet |
Denvil-Sommer, Anna Gehlen, Marion Vrac, Mathieu Mejia, Carlos |
author_sort |
Denvil-Sommer, Anna |
title |
LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 |
title_short |
LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 |
title_full |
LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 |
title_fullStr |
LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 |
title_full_unstemmed |
LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 |
title_sort |
lsce-ffnn-v1: the reconstruction of surface ocean pco2 |
publisher |
HAL CCSD |
publishDate |
2019 |
url |
https://hal.sorbonne-universite.fr/hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978/document https://hal.sorbonne-universite.fr/hal-02171978/file/gmd-12-2091-2019.pdf https://doi.org/10.5194/gmd-12-2091-2019 |
geographic |
Southern Ocean Pacific Indian |
geographic_facet |
Southern Ocean Pacific Indian |
genre |
Southern Ocean |
genre_facet |
Southern Ocean |
op_source |
ISSN: 1991-959X Geoscientific Model Development https://hal.sorbonne-universite.fr/hal-02171978 Geoscientific Model Development, European Geosciences Union, 2019, 12 (5), pp.2091-2105. ⟨10.5194/gmd-12-2091-2019⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-12-2091-2019 hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978/document https://hal.sorbonne-universite.fr/hal-02171978/file/gmd-12-2091-2019.pdf doi:10.5194/gmd-12-2091-2019 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/gmd-12-2091-2019 |
container_title |
Geoscientific Model Development |
container_volume |
12 |
container_issue |
5 |
container_start_page |
2091 |
op_container_end_page |
2105 |
_version_ |
1766207538158632960 |
spelling |
ftccsdartic:oai:HAL:hal-02171978v1 2023-05-15T18:25:51+02:00 LSCE-FFNN-v1: the reconstruction of surface ocean pCO2 Denvil-Sommer, Anna Gehlen, Marion Vrac, Mathieu Mejia, Carlos Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Sorbonne Université (SU) 2019 https://hal.sorbonne-universite.fr/hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978/document https://hal.sorbonne-universite.fr/hal-02171978/file/gmd-12-2091-2019.pdf https://doi.org/10.5194/gmd-12-2091-2019 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-12-2091-2019 hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978 https://hal.sorbonne-universite.fr/hal-02171978/document https://hal.sorbonne-universite.fr/hal-02171978/file/gmd-12-2091-2019.pdf doi:10.5194/gmd-12-2091-2019 info:eu-repo/semantics/OpenAccess ISSN: 1991-959X Geoscientific Model Development https://hal.sorbonne-universite.fr/hal-02171978 Geoscientific Model Development, European Geosciences Union, 2019, 12 (5), pp.2091-2105. ⟨10.5194/gmd-12-2091-2019⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2019 ftccsdartic https://doi.org/10.5194/gmd-12-2091-2019 2021-12-19T01:54:14Z International audience A new feed-forward neural network (FFNN) model is presented to reconstruct surface ocean partial pressure of carbon dioxide (pCO 2) over the global ocean. The model consists of two steps: (1) the reconstruction of pCO 2 climatology, and (2) the reconstruction of pCO 2 anomalies with respect to the climatology. For the first step, a grid-ded climatology was used as the target, along with sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), chlorophyll a (Chl a), mixed layer depth (MLD), as well as latitude and longitude as predictors. For the second step, data from the Surface Ocean CO 2 Atlas (SO-CAT) provided the target. The same set of predictors was used during step (2) augmented by their anomalies. During each step, the FFNN model reconstructs the nonlinear relationships between pCO 2 and the ocean predictors. It provides monthly surface ocean pCO 2 distributions on a 1 • ×1 • grid for the period from 2001 to 2016. Global ocean pCO 2 was reconstructed with satisfying accuracy compared with independent observational data from SOCAT. However, errors were larger in regions with poor data coverage (e.g., the Indian Ocean, the Southern Ocean and the subpolar Pacific). The model captured the strong interannual variability of surface ocean pCO 2 with reasonable skill over the equatorial Pacific associated with ENSO (the El Niño-Southern Oscillation). Our model was compared to three pCO 2 mapping methods that participated in the Surface Ocean pCO 2 Mapping intercomparison (SOCOM) initiative. We found a good agreement in seasonal and interannual variability between the models over the global ocean. However, important differences still exist at the regional scale, especially in the Southern Hemisphere and, in particular, in the southern Pacific and the Indian Ocean, as these regions suffer from poor data coverage. Large regional uncertainties in reconstructed surface ocean pCO 2 and sea-air CO 2 fluxes have a strong influence on global estimates of CO 2 fluxes ... Article in Journal/Newspaper Southern Ocean Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Southern Ocean Pacific Indian Geoscientific Model Development 12 5 2091 2105 |