Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)

International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of su...

Full description

Bibliographic Details
Published in:Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management
Main Authors: Gadal, Sébastien, Ouerghemmi, Walid
Other Authors: Aix Marseille Université (AMU), Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Côte d'Azur (UCA)-Avignon Université (AU)-Université Nice Sophia Antipolis (. - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), CNES CES THEIA Artificialisation et Urbanisation, INSTICC, University of Crete, IEEE GRSS, ACM SIGSPATIAL, Cédric Grueau, Robert Laurini, Lemonia Ragia, ANR-15-CE22-0006,PUR,Pôles URbains(2015), ANR-14-CE22-0016,HYEP,Imagerie hyperspectrale pour la planification urbaine environnementale(2014), ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010)
Format: Conference Object
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal-amu.archives-ouvertes.fr/hal-02120100
https://hal-amu.archives-ouvertes.fr/hal-02120100/document
https://hal-amu.archives-ouvertes.fr/hal-02120100/file/article2_HAL.pdf
https://doi.org/10.5220/0007752202820288
Description
Summary:International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of supervised classifications methods are one of the main example where geographic knowledge is necessary for both algorithms training and results validation. Recently, with the coming back of the artificial intelligence (AI) wave, it appears that a large spectrum of usually employed methodologies in remote sensing and image processing, are one of the main drivers of AI: machine learning, deep learning are the most effective’s examples. As well as many based processing algorithms like the Support Vector Machine (SVM) or the Random Forest (RF). However, despite the constant performances of the methods of calculus; the geographic knowledge’s determines the accuracy of recognition and classification in image processing and spatial modelling generated. In regard of the fast seasonal and annual landscape changes in the Arctic climate, and complex urban structures, Yakutsk and Kaunas cities contribute to the reflexion.