Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization
International audience Orbital magnetic field data show that portions of the Moon's crust are strongly magnetized, and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed during the first several hundred million years of lunar history. The origin o...
Published in: | Journal of Geophysical Research: Planets |
---|---|
Main Authors: | , |
Other Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2017
|
Subjects: | |
Online Access: | https://hal.archives-ouvertes.fr/hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528/document https://hal.archives-ouvertes.fr/hal-02105528/file/Oliveira%20and%20Wieczorek%202017.pdf https://doi.org/10.1002/2016JE005199 |
id |
ftccsdartic:oai:HAL:hal-02105528v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-02105528v1 2023-05-15T17:39:17+02:00 Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization Oliveira, J., Wieczorek, M. Institut de Physique du Globe de Paris (IPGP) Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS) Joseph Louis LAGRANGE (LAGRANGE) Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (. - 2019) (UNS) COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) 2017-02 https://hal.archives-ouvertes.fr/hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528/document https://hal.archives-ouvertes.fr/hal-02105528/file/Oliveira%20and%20Wieczorek%202017.pdf https://doi.org/10.1002/2016JE005199 en eng HAL CCSD Wiley-Blackwell info:eu-repo/semantics/altIdentifier/doi/10.1002/2016JE005199 hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528/document https://hal.archives-ouvertes.fr/hal-02105528/file/Oliveira%20and%20Wieczorek%202017.pdf doi:10.1002/2016JE005199 info:eu-repo/semantics/OpenAccess ISSN: 2169-9097 EISSN: 2169-9100 Journal of Geophysical Research. Planets https://hal.archives-ouvertes.fr/hal-02105528 Journal of Geophysical Research. Planets, Wiley-Blackwell, 2017, 122 (2), pp.383-399. ⟨10.1002/2016JE005199⟩ [SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology info:eu-repo/semantics/article Journal articles 2017 ftccsdartic https://doi.org/10.1002/2016JE005199 2021-12-12T02:39:51Z International audience Orbital magnetic field data show that portions of the Moon's crust are strongly magnetized, and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed during the first several hundred million years of lunar history. The origin of the fields that magnetized the crust are not understood and could be the result of either a long-lived core-generated dynamo or transient fields associated with large impact events. Core dynamo models usually predict that the field would be predominantly dipolar, with the dipole axis aligned with the rotation axis. We test this hypothesis by modeling the direction of crustal magnetization using a global magnetic field model of the Moon derived from Lunar Prospector and Kaguya magnetometer data. We make use of a model that assumes that the crust is unidirectionally magnetized. The intensity of magnetization can vary with the crust, and the best fitting direction of magnetization is obtained from a nonnegative least squares inversion. From the best fitting magnetization direction we obtain the corresponding north magnetic pole predicted by an internal dipolar field. Some of the obtained paleopoles are associated with the current geographic poles, while other well-constrained anomalies have paleopoles at equatorial latitudes, preferentially at 90 ∘ east and west longitudes. One plausible hypothesis for this distribution of paleopoles is that the Moon possessed a long-lived dipolar field but that the dipole was not aligned with the rotation axis as a result of large-scale heat flow heterogeneities at the core-mantle boundary. Article in Journal/Newspaper North Magnetic Pole Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Journal of Geophysical Research: Planets 122 2 383 399 |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology |
spellingShingle |
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology Oliveira, J., Wieczorek, M. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization |
topic_facet |
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology |
description |
International audience Orbital magnetic field data show that portions of the Moon's crust are strongly magnetized, and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed during the first several hundred million years of lunar history. The origin of the fields that magnetized the crust are not understood and could be the result of either a long-lived core-generated dynamo or transient fields associated with large impact events. Core dynamo models usually predict that the field would be predominantly dipolar, with the dipole axis aligned with the rotation axis. We test this hypothesis by modeling the direction of crustal magnetization using a global magnetic field model of the Moon derived from Lunar Prospector and Kaguya magnetometer data. We make use of a model that assumes that the crust is unidirectionally magnetized. The intensity of magnetization can vary with the crust, and the best fitting direction of magnetization is obtained from a nonnegative least squares inversion. From the best fitting magnetization direction we obtain the corresponding north magnetic pole predicted by an internal dipolar field. Some of the obtained paleopoles are associated with the current geographic poles, while other well-constrained anomalies have paleopoles at equatorial latitudes, preferentially at 90 ∘ east and west longitudes. One plausible hypothesis for this distribution of paleopoles is that the Moon possessed a long-lived dipolar field but that the dipole was not aligned with the rotation axis as a result of large-scale heat flow heterogeneities at the core-mantle boundary. |
author2 |
Institut de Physique du Globe de Paris (IPGP) Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS) Joseph Louis LAGRANGE (LAGRANGE) Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (. - 2019) (UNS) COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Oliveira, J., Wieczorek, M. |
author_facet |
Oliveira, J., Wieczorek, M. |
author_sort |
Oliveira, J., |
title |
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization |
title_short |
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization |
title_full |
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization |
title_fullStr |
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization |
title_full_unstemmed |
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization |
title_sort |
testing the axial dipole hypothesis for the moon by modeling the direction of crustal magnetization |
publisher |
HAL CCSD |
publishDate |
2017 |
url |
https://hal.archives-ouvertes.fr/hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528/document https://hal.archives-ouvertes.fr/hal-02105528/file/Oliveira%20and%20Wieczorek%202017.pdf https://doi.org/10.1002/2016JE005199 |
genre |
North Magnetic Pole |
genre_facet |
North Magnetic Pole |
op_source |
ISSN: 2169-9097 EISSN: 2169-9100 Journal of Geophysical Research. Planets https://hal.archives-ouvertes.fr/hal-02105528 Journal of Geophysical Research. Planets, Wiley-Blackwell, 2017, 122 (2), pp.383-399. ⟨10.1002/2016JE005199⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1002/2016JE005199 hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528/document https://hal.archives-ouvertes.fr/hal-02105528/file/Oliveira%20and%20Wieczorek%202017.pdf doi:10.1002/2016JE005199 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1002/2016JE005199 |
container_title |
Journal of Geophysical Research: Planets |
container_volume |
122 |
container_issue |
2 |
container_start_page |
383 |
op_container_end_page |
399 |
_version_ |
1766140038365577216 |