Dense-gas tracers and carbon isotopes in five 2.5 < z < 4 lensed dusty star-forming galaxies from the SPT SMG sample

International audience The origin of the high star formation rates (SFR) observed in high-redshift dusty star-forming galaxies is still unknown. Large fractions of dense molecular gas might provide part of the explanation, but there are few observational constraints on the amount of dense gas in hig...

Full description

Bibliographic Details
Published in:Astronomy & Astrophysics
Main Authors: Béthermin, M., Greve, T.R., De Breuck, C., Vieira, J.D., Aravena, M., Chapman, S.C., Chen, Chian-Chou, Dong, C., Hayward, C.C., Hezaveh, Y., Marrone, D.P., Narayanan, D., Phadke, K.A., Reuter, C.A., Spilker, J.S., Stark, A.A., Strandet, M.L., Weiß, A.
Other Authors: Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales Toulouse (CNES)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01914507
https://hal.archives-ouvertes.fr/hal-01914507/document
https://hal.archives-ouvertes.fr/hal-01914507/file/aa33081-18.pdf
https://doi.org/10.1051/0004-6361/201833081
Description
Summary:International audience The origin of the high star formation rates (SFR) observed in high-redshift dusty star-forming galaxies is still unknown. Large fractions of dense molecular gas might provide part of the explanation, but there are few observational constraints on the amount of dense gas in high-redshift systems dominated by star formation. In this paper, we present the results of our Atacama large millimeter array (ALMA) program targeting dense-gas tracers (HCN(5-4), HCO+(5-4), and HNC(5-4)) in five strongly lensed galaxies from the South Pole Telescope (SPT) submillimeter galaxy sample. We detected two of these lines (S/N > 5) in SPT-125-47 at z = 2.51 and tentatively detected all three (S/N ∼ 3) in SPT0551-50 at z = 3.16. Since a significant fraction of our target lines is not detected, we developed a statistical method to derive unbiased mean properties of our sample taking into account both detections and non-detections. On average, the HCN(5-4) and HCO+(5-4) luminosities of our sources are a factor of ∼1.7 fainter than expected, based on the local L′HCN(5-4) − LIR relation, but this offset corresponds to only ∼2σ if we consider sample variance. We find that both the HCO+/HCN and HNC/HCN flux ratios are compatible with unity. The first ratio is expected for photo-dominated regions (PDRs) while the second is consistent with PDRs or X-ray dominated regions (XDRs) and/or mid-infrared (IR) pumping of HNC. Our sources are at the high end of the local relation between the star formation efficiency, determined using the LIR/[CI] and LIR/CO ratios, and the dense-gas fraction, estimated using the HCN/[CI] and HCN/CO ratios. Finally, in SPT0125-47, which has the highest signal-to-noise ratio, we found that the velocity profiles of the lines tracing dense (HCN, HCO+) and lower-density (CO, [CI]) molecular gas are similar. In addition to these lines, we obtained one robust and one tentative detection of 13CO(4-3) and found an average I12CO(4-3)/I13CO(4-3) flux ratio of 26.1−3.5+4.5, indicating a young but not ...