A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)

International audience A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in...

Full description

Bibliographic Details
Main Author: Haglund, J.
Other Authors: Department of Mathematics Philadelphia, University of Pennsylvania Philadelphia, Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.inria.fr/hal-01215103
https://hal.inria.fr/hal-01215103/document
https://hal.inria.fr/hal-01215103/file/dmAO0140.pdf
id ftccsdartic:oai:HAL:hal-01215103v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-01215103v1 2023-05-15T16:51:16+02:00 A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version) Haglund, J. Department of Mathematics Philadelphia University of Pennsylvania Philadelphia Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://hal.inria.fr/hal-01215103 https://hal.inria.fr/hal-01215103/document https://hal.inria.fr/hal-01215103/file/dmAO0140.pdf en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS hal-01215103 https://hal.inria.fr/hal-01215103 https://hal.inria.fr/hal-01215103/document https://hal.inria.fr/hal-01215103/file/dmAO0140.pdf info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215103 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.445-456 Hilbert series diagonal coinvariants [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftccsdartic 2020-12-25T18:15:03Z International audience A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in $q,t$. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald polynomial Pieri coefficients can be used to transform Haiman's formula for the Hilbert series into an explicit polynomial in $q,t$ with integer coefficients. We also provide an equivalent formula for the Hilbert series as the constant term in a multivariate Laurent series. Un cas spécial de l'identité de Haiman [Invent. Math. \textbf149 (2002), pp. 371–407] pour le caractère de l'anneau quotient des coinvariants diagonaux sous l'action du groupe symétrique fournit une formule pour la série de Hilbert bigraduée comme somme de fonctions rationnelles en q,t. Dans cet article nous montrons comment une identité de sommation de Garsia et Zabrocki pour les coefficients de Pieri des polynômes de Macdonald peut être utilisée pour transformer la formule de Haiman pour la série de Hilbert en un polynôme explicite en q,t à coefficients entiers. Nous présentons également une formule équivalente pour la série de Hilbert comme terme constant d'une série de Laurent multivariée. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic Hilbert series
diagonal coinvariants
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
spellingShingle Hilbert series
diagonal coinvariants
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Haglund, J.
A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)
topic_facet Hilbert series
diagonal coinvariants
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
description International audience A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in $q,t$. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald polynomial Pieri coefficients can be used to transform Haiman's formula for the Hilbert series into an explicit polynomial in $q,t$ with integer coefficients. We also provide an equivalent formula for the Hilbert series as the constant term in a multivariate Laurent series. Un cas spécial de l'identité de Haiman [Invent. Math. \textbf149 (2002), pp. 371–407] pour le caractère de l'anneau quotient des coinvariants diagonaux sous l'action du groupe symétrique fournit une formule pour la série de Hilbert bigraduée comme somme de fonctions rationnelles en q,t. Dans cet article nous montrons comment une identité de sommation de Garsia et Zabrocki pour les coefficients de Pieri des polynômes de Macdonald peut être utilisée pour transformer la formule de Haiman pour la série de Hilbert en un polynôme explicite en q,t à coefficients entiers. Nous présentons également une formule équivalente pour la série de Hilbert comme terme constant d'une série de Laurent multivariée.
author2 Department of Mathematics Philadelphia
University of Pennsylvania Philadelphia
Bousquet-Mélou
Mireille and Wachs
Michelle and Hultman
Axel
format Conference Object
author Haglund, J.
author_facet Haglund, J.
author_sort Haglund, J.
title A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)
title_short A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)
title_full A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)
title_fullStr A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)
title_full_unstemmed A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)
title_sort polynomial expression for the hilbert series of the quotient ring of diagonal coinvariants (condensed version)
publisher HAL CCSD
publishDate 2011
url https://hal.inria.fr/hal-01215103
https://hal.inria.fr/hal-01215103/document
https://hal.inria.fr/hal-01215103/file/dmAO0140.pdf
op_coverage Reykjavik, Iceland
genre Iceland
genre_facet Iceland
op_source ISSN: 1462-7264
EISSN: 1365-8050
Discrete Mathematics and Theoretical Computer Science
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
https://hal.inria.fr/hal-01215103
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.445-456
op_relation hal-01215103
https://hal.inria.fr/hal-01215103
https://hal.inria.fr/hal-01215103/document
https://hal.inria.fr/hal-01215103/file/dmAO0140.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766041382693109760