On the evaluation of the Tutte polynomial at the points (1,-1) and (2,-1)

International audience C. Merino [Electron. J. Combin. 15 (2008)] showed that the Tutte polynomial of a complete graph satisfies $t(K_{n+2};2,-1)=t(K_n;1,-1)$. We first give a bijective proof of this identity based on the relationship between the Tutte polynomial and the inversion polynomial for tre...

Full description

Bibliographic Details
Main Authors: Goodall, Andrew, Merino, Criel, de Mier, Anna, Noy, Marc
Other Authors: Department of Applied Mathematics and Institute of Theoretical Computer Science (Charles University), Charles University Prague (CU), Instituto de Matematicas (UNAM), Universidad Nacional Autónoma de México (UNAM), Universitat Politècnica de Catalunya Barcelona (UPC), Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.inria.fr/hal-01215102
https://hal.inria.fr/hal-01215102/document
https://hal.inria.fr/hal-01215102/file/dmAO0137.pdf
Description
Summary:International audience C. Merino [Electron. J. Combin. 15 (2008)] showed that the Tutte polynomial of a complete graph satisfies $t(K_{n+2};2,-1)=t(K_n;1,-1)$. We first give a bijective proof of this identity based on the relationship between the Tutte polynomial and the inversion polynomial for trees. Next we move to our main result, a sufficient condition for a graph G to have two vertices u and v such that $t(G;2,-1)=t(G-\{u,v\};1,-1)$; the condition is satisfied in particular by the class of threshold graphs. Finally, we give a formula for the evaluation of $t(K_{n,m};2,-1)$ involving up-down permutations. C. Merino [Electron. J. Combin. 15 (2008)] a montré que le polynôme de Tutte du graphe complet satisfait $t(K_{n+2};2,-1)=t(K_n;1,-1)$. Le rapport entre le polynôme de Tutte et le polynôme d'inversions d'un arbre nous permet de donner une preuve bijective de cette identité. Le résultat principal du travail est une condition suffisante pour qu'un graphe ait deux sommets u et v tels que $t(G;2,-1)=t(G-\{u,v\};1,-1)$; en particulier, les graphes ``threshold'' satisfont cette condition. Finalement, nous donnons une formule pour $t(K_{n,m};2,-1)$ qui fait intervenir les permutations alternées.