Hyperplane Arrangements and Diagonal Harmonics

International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular,...

Full description

Bibliographic Details
Main Author: Armstrong, Drew
Other Authors: Department of Mathematics Miami, University of Miami Coral Gables, Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.inria.fr/hal-01215088
https://hal.inria.fr/hal-01215088/document
https://hal.inria.fr/hal-01215088/file/dmAO0105.pdf
_version_ 1821557454673018880
author Armstrong, Drew
author2 Department of Mathematics Miami
University of Miami Coral Gables
Bousquet-Mélou
Mireille and Wachs
Michelle and Hultman
Axel
author_facet Armstrong, Drew
author_sort Armstrong, Drew
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
description International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arrangement Ish. Nous prouvons que nos statistiques sont équivalentes aux statistiques area' et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s'exprime naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux directions: arrangements Shi "étendus'', et chambres bornées associées. Cela conduit à une interprétation (conjecturale) combinatoire pour toutes les puissances entières de l'opérateur nabla de Bergeron-Garsia appliqué aux fonctions symétriques élémentaires.
format Conference Object
genre Iceland
genre_facet Iceland
geographic Haglund
geographic_facet Haglund
id ftccsdartic:oai:HAL:hal-01215088v1
institution Open Polar
language English
long_lat ENVELOPE(12.180,12.180,65.320,65.320)
op_collection_id ftccsdartic
op_coverage Reykjavik, Iceland
op_relation hal-01215088
https://hal.inria.fr/hal-01215088
https://hal.inria.fr/hal-01215088/document
https://hal.inria.fr/hal-01215088/file/dmAO0105.pdf
op_rights info:eu-repo/semantics/OpenAccess
op_source ISSN: 1462-7264
EISSN: 1365-8050
Discrete Mathematics and Theoretical Computer Science
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
https://hal.inria.fr/hal-01215088
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.39-50
publishDate 2011
publisher HAL CCSD
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-01215088v1 2025-01-16T22:40:38+00:00 Hyperplane Arrangements and Diagonal Harmonics Armstrong, Drew Department of Mathematics Miami University of Miami Coral Gables Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://hal.inria.fr/hal-01215088 https://hal.inria.fr/hal-01215088/document https://hal.inria.fr/hal-01215088/file/dmAO0105.pdf en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS hal-01215088 https://hal.inria.fr/hal-01215088 https://hal.inria.fr/hal-01215088/document https://hal.inria.fr/hal-01215088/file/dmAO0105.pdf info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215088 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.39-50 Shi arrangement Ish arrangement affine permutations diagonal harmonics Catalan numbers nabla operator parking functions [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftccsdartic 2020-12-25T18:15:03Z International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arrangement Ish. Nous prouvons que nos statistiques sont équivalentes aux statistiques area' et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s'exprime naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux directions: arrangements Shi "étendus'', et chambres bornées associées. Cela conduit à une interprétation (conjecturale) combinatoire pour toutes les puissances entières de l'opérateur nabla de Bergeron-Garsia appliqué aux fonctions symétriques élémentaires. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Haglund ENVELOPE(12.180,12.180,65.320,65.320)
spellingShingle Shi arrangement
Ish arrangement
affine permutations
diagonal harmonics
Catalan numbers
nabla operator
parking functions
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Armstrong, Drew
Hyperplane Arrangements and Diagonal Harmonics
title Hyperplane Arrangements and Diagonal Harmonics
title_full Hyperplane Arrangements and Diagonal Harmonics
title_fullStr Hyperplane Arrangements and Diagonal Harmonics
title_full_unstemmed Hyperplane Arrangements and Diagonal Harmonics
title_short Hyperplane Arrangements and Diagonal Harmonics
title_sort hyperplane arrangements and diagonal harmonics
topic Shi arrangement
Ish arrangement
affine permutations
diagonal harmonics
Catalan numbers
nabla operator
parking functions
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
topic_facet Shi arrangement
Ish arrangement
affine permutations
diagonal harmonics
Catalan numbers
nabla operator
parking functions
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
url https://hal.inria.fr/hal-01215088
https://hal.inria.fr/hal-01215088/document
https://hal.inria.fr/hal-01215088/file/dmAO0105.pdf