Arc Spaces and Rogers-Ramanujan Identities
International audience Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbe...
Main Authors: | , , |
---|---|
Other Authors: | , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2011
|
Subjects: | |
Online Access: | https://hal.inria.fr/hal-01215083 https://hal.inria.fr/hal-01215083/document https://hal.inria.fr/hal-01215083/file/dmAO0120.pdf |
id |
ftccsdartic:oai:HAL:hal-01215083v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-01215083v1 2023-05-15T16:50:24+02:00 Arc Spaces and Rogers-Ramanujan Identities Bruschek, Clemens Mourtada, Hussein Schepers, Jan University of Vienna Vienna Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven) Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://hal.inria.fr/hal-01215083 https://hal.inria.fr/hal-01215083/document https://hal.inria.fr/hal-01215083/file/dmAO0120.pdf en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS hal-01215083 https://hal.inria.fr/hal-01215083 https://hal.inria.fr/hal-01215083/document https://hal.inria.fr/hal-01215083/file/dmAO0120.pdf info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science Discrete Mathematics and Theoretical Computer Science (DMTCS) 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215083 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.211-220 formal power series Hilbert-Poincaré series partitions Rogers-Ramanujan Identities arc spaces infinite dimensional Gröbner basis [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftccsdartic 2021-12-19T02:51:34Z International audience Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base variety. In the case of the double point this is precisely the generating series for the integer partitions without equal or consecutive parts. Les espaces des arcs ont été introduit pour étudier les singularités, mais ils ont aussi un lien fort avec la combinatoire. Ce lien permet une nouvelle approche vers les identités de Rogers-Ramanujan. L'objet permettant cette approche est la série de Hilbert-Poincaré de l'algèbre des arcs centrés en un point de la variété de base. Dans le cas où cette variété est le point double, cette série est la série génératrice des partitions d'un nombre entier sans parties égales ou consécutives. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Double Point ENVELOPE(178.463,178.463,51.929,51.929) |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
formal power series Hilbert-Poincaré series partitions Rogers-Ramanujan Identities arc spaces infinite dimensional Gröbner basis [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] |
spellingShingle |
formal power series Hilbert-Poincaré series partitions Rogers-Ramanujan Identities arc spaces infinite dimensional Gröbner basis [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] Bruschek, Clemens Mourtada, Hussein Schepers, Jan Arc Spaces and Rogers-Ramanujan Identities |
topic_facet |
formal power series Hilbert-Poincaré series partitions Rogers-Ramanujan Identities arc spaces infinite dimensional Gröbner basis [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] |
description |
International audience Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base variety. In the case of the double point this is precisely the generating series for the integer partitions without equal or consecutive parts. Les espaces des arcs ont été introduit pour étudier les singularités, mais ils ont aussi un lien fort avec la combinatoire. Ce lien permet une nouvelle approche vers les identités de Rogers-Ramanujan. L'objet permettant cette approche est la série de Hilbert-Poincaré de l'algèbre des arcs centrés en un point de la variété de base. Dans le cas où cette variété est le point double, cette série est la série génératrice des partitions d'un nombre entier sans parties égales ou consécutives. |
author2 |
University of Vienna Vienna Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven) Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel |
format |
Conference Object |
author |
Bruschek, Clemens Mourtada, Hussein Schepers, Jan |
author_facet |
Bruschek, Clemens Mourtada, Hussein Schepers, Jan |
author_sort |
Bruschek, Clemens |
title |
Arc Spaces and Rogers-Ramanujan Identities |
title_short |
Arc Spaces and Rogers-Ramanujan Identities |
title_full |
Arc Spaces and Rogers-Ramanujan Identities |
title_fullStr |
Arc Spaces and Rogers-Ramanujan Identities |
title_full_unstemmed |
Arc Spaces and Rogers-Ramanujan Identities |
title_sort |
arc spaces and rogers-ramanujan identities |
publisher |
HAL CCSD |
publishDate |
2011 |
url |
https://hal.inria.fr/hal-01215083 https://hal.inria.fr/hal-01215083/document https://hal.inria.fr/hal-01215083/file/dmAO0120.pdf |
op_coverage |
Reykjavik, Iceland |
long_lat |
ENVELOPE(178.463,178.463,51.929,51.929) |
geographic |
Double Point |
geographic_facet |
Double Point |
genre |
Iceland |
genre_facet |
Iceland |
op_source |
ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science Discrete Mathematics and Theoretical Computer Science (DMTCS) 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215083 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.211-220 |
op_relation |
hal-01215083 https://hal.inria.fr/hal-01215083 https://hal.inria.fr/hal-01215083/document https://hal.inria.fr/hal-01215083/file/dmAO0120.pdf |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1766040557340065792 |