Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs
International audience We show that maximal 0-1-fillings of moon polynomials, with restricted chain lengths, can be identified with certain rc-graphs, also known as pipe dreams. In particular, this exhibits a connection between maximal 0-1-fillings of Ferrers shapes and Schubert polynomials. Moreove...
Published in: | Discrete Mathematics & Theoretical Computer Science |
---|---|
Main Author: | |
Other Authors: | , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2011
|
Subjects: | |
Online Access: | https://hal.inria.fr/hal-01215066 https://hal.inria.fr/hal-01215066/document https://hal.inria.fr/hal-01215066/file/dmAO0173.pdf https://doi.org/10.46298/dmtcs.2957 |
id |
ftccsdartic:oai:HAL:hal-01215066v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-01215066v1 2023-05-15T16:51:39+02:00 Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs Rubey, Martin Institut für Algebra, Zahlentheorie und Diskrete Mathematik (Hannover) Fakultät fur Mathematik und Physik Hannover Leibniz Universität Hannover=Leibniz University Hannover-Leibniz Universität Hannover=Leibniz University Hannover Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://hal.inria.fr/hal-01215066 https://hal.inria.fr/hal-01215066/document https://hal.inria.fr/hal-01215066/file/dmAO0173.pdf https://doi.org/10.46298/dmtcs.2957 en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2957 hal-01215066 https://hal.inria.fr/hal-01215066 https://hal.inria.fr/hal-01215066/document https://hal.inria.fr/hal-01215066/file/dmAO0173.pdf doi:10.46298/dmtcs.2957 info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215066 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.835-848, ⟨10.46298/dmtcs.2957⟩ multitriangulations rc-graphs Edelman-Greene insertion Schubert polynomials [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftccsdartic https://doi.org/10.46298/dmtcs.2957 2023-03-05T11:38:04Z International audience We show that maximal 0-1-fillings of moon polynomials, with restricted chain lengths, can be identified with certain rc-graphs, also known as pipe dreams. In particular, this exhibits a connection between maximal 0-1-fillings of Ferrers shapes and Schubert polynomials. Moreover, it entails a bijective proof showing that the number of maximal fillings of a stack polyomino $S$ with no north-east chains longer than $k$ depends only on $k$ and the multiset of column heights of $S$. Our main contribution is a slightly stronger theorem, which in turn leads us to conjecture that the poset of rc-graphs with covering relation given by generalised chute moves is in fact a lattice. Nous démontrons que les remplissages maximaux avec 0 et 1 des polyominos $L$-convexes, avec longueurs de chaînes restreintes, peuvent être identifiés avec certains $\textit{rc-graphes}$, également connus sous le nom de $\textit{pipe dreams}$. En particulier, ceci montre un lien entre ces remplissages d'un diagramme de Ferrers et les polynômes de Schubert. On en déduit en outre une preuve bijective du fait que le nombre de remplissages maximaux d'un $\textit{stack polyomino}$ $S$, avec longueurs de chaînes bornées par un entier $k$, dépend seulement de $k$ et du multi-ensemble des tailles des colonnes de $S$. Notre contribution principale est un énoncé un peu plus fort, qui nous mène à conjecturer que l'ensemble ordonné (poset) des $\textit{rc-graphes}$ est en fait un treillis. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Greene ENVELOPE(168.233,168.233,-72.100,-72.100) Discrete Mathematics & Theoretical Computer Science DMTCS Proceeding Proceedings |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
multitriangulations rc-graphs Edelman-Greene insertion Schubert polynomials [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] |
spellingShingle |
multitriangulations rc-graphs Edelman-Greene insertion Schubert polynomials [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] Rubey, Martin Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
topic_facet |
multitriangulations rc-graphs Edelman-Greene insertion Schubert polynomials [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] |
description |
International audience We show that maximal 0-1-fillings of moon polynomials, with restricted chain lengths, can be identified with certain rc-graphs, also known as pipe dreams. In particular, this exhibits a connection between maximal 0-1-fillings of Ferrers shapes and Schubert polynomials. Moreover, it entails a bijective proof showing that the number of maximal fillings of a stack polyomino $S$ with no north-east chains longer than $k$ depends only on $k$ and the multiset of column heights of $S$. Our main contribution is a slightly stronger theorem, which in turn leads us to conjecture that the poset of rc-graphs with covering relation given by generalised chute moves is in fact a lattice. Nous démontrons que les remplissages maximaux avec 0 et 1 des polyominos $L$-convexes, avec longueurs de chaînes restreintes, peuvent être identifiés avec certains $\textit{rc-graphes}$, également connus sous le nom de $\textit{pipe dreams}$. En particulier, ceci montre un lien entre ces remplissages d'un diagramme de Ferrers et les polynômes de Schubert. On en déduit en outre une preuve bijective du fait que le nombre de remplissages maximaux d'un $\textit{stack polyomino}$ $S$, avec longueurs de chaînes bornées par un entier $k$, dépend seulement de $k$ et du multi-ensemble des tailles des colonnes de $S$. Notre contribution principale est un énoncé un peu plus fort, qui nous mène à conjecturer que l'ensemble ordonné (poset) des $\textit{rc-graphes}$ est en fait un treillis. |
author2 |
Institut für Algebra, Zahlentheorie und Diskrete Mathematik (Hannover) Fakultät fur Mathematik und Physik Hannover Leibniz Universität Hannover=Leibniz University Hannover-Leibniz Universität Hannover=Leibniz University Hannover Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel |
format |
Conference Object |
author |
Rubey, Martin |
author_facet |
Rubey, Martin |
author_sort |
Rubey, Martin |
title |
Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
title_short |
Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
title_full |
Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
title_fullStr |
Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
title_full_unstemmed |
Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
title_sort |
maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs |
publisher |
HAL CCSD |
publishDate |
2011 |
url |
https://hal.inria.fr/hal-01215066 https://hal.inria.fr/hal-01215066/document https://hal.inria.fr/hal-01215066/file/dmAO0173.pdf https://doi.org/10.46298/dmtcs.2957 |
op_coverage |
Reykjavik, Iceland |
long_lat |
ENVELOPE(168.233,168.233,-72.100,-72.100) |
geographic |
Greene |
geographic_facet |
Greene |
genre |
Iceland |
genre_facet |
Iceland |
op_source |
ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215066 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.835-848, ⟨10.46298/dmtcs.2957⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2957 hal-01215066 https://hal.inria.fr/hal-01215066 https://hal.inria.fr/hal-01215066/document https://hal.inria.fr/hal-01215066/file/dmAO0173.pdf doi:10.46298/dmtcs.2957 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.46298/dmtcs.2957 |
container_title |
Discrete Mathematics & Theoretical Computer Science |
container_volume |
DMTCS Proceeding |
container_issue |
Proceedings |
_version_ |
1766041774607826944 |