Bagging Stochastic Watershed on Natural Color Image Segmentation

International audience The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we int...

Full description

Bibliographic Details
Main Authors: Franchi, Gianni, Angulo, Jesus
Other Authors: Centre de Morphologie Mathématique (CMM), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Format: Conference Object
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01104256
https://hal.archives-ouvertes.fr/hal-01104256/document
https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf
https://doi.org/10.1007/978-3-319-18720-4_36
id ftccsdartic:oai:HAL:hal-01104256v2
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-01104256v2 2023-05-15T16:48:36+02:00 Bagging Stochastic Watershed on Natural Color Image Segmentation Franchi, Gianni Angulo, Jesus Centre de Morphologie Mathématique (CMM) MINES ParisTech - École nationale supérieure des mines de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Reykjavik, Iceland 2015 https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf https://doi.org/10.1007/978-3-319-18720-4_36 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-18720-4_36 hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf doi:10.1007/978-3-319-18720-4_36 info:eu-repo/semantics/OpenAccess International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing https://hal.archives-ouvertes.fr/hal-01104256 International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2015, Reykjavik, Iceland. pp.422-433, ⟨10.1007/978-3-319-18720-4_36⟩ Berkeley segmentation database unsupervised image segmentation stochastic watershed [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] info:eu-repo/semantics/conferenceObject Conference papers 2015 ftccsdartic https://doi.org/10.1007/978-3-319-18720-4_36 2021-11-21T03:12:38Z International audience The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we introduce here a fully unsupervised multi-scale approach including bag-ging. Re-sampling and bagging is a classical stochastic approach to im-prove the estimation. We have assessed the performance, and compared to other version of stochastic watershed, using the Berkeley segmentation database. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) 422 433
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic Berkeley segmentation database
unsupervised image segmentation
stochastic watershed
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
spellingShingle Berkeley segmentation database
unsupervised image segmentation
stochastic watershed
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Franchi, Gianni
Angulo, Jesus
Bagging Stochastic Watershed on Natural Color Image Segmentation
topic_facet Berkeley segmentation database
unsupervised image segmentation
stochastic watershed
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
description International audience The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we introduce here a fully unsupervised multi-scale approach including bag-ging. Re-sampling and bagging is a classical stochastic approach to im-prove the estimation. We have assessed the performance, and compared to other version of stochastic watershed, using the Berkeley segmentation database.
author2 Centre de Morphologie Mathématique (CMM)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
format Conference Object
author Franchi, Gianni
Angulo, Jesus
author_facet Franchi, Gianni
Angulo, Jesus
author_sort Franchi, Gianni
title Bagging Stochastic Watershed on Natural Color Image Segmentation
title_short Bagging Stochastic Watershed on Natural Color Image Segmentation
title_full Bagging Stochastic Watershed on Natural Color Image Segmentation
title_fullStr Bagging Stochastic Watershed on Natural Color Image Segmentation
title_full_unstemmed Bagging Stochastic Watershed on Natural Color Image Segmentation
title_sort bagging stochastic watershed on natural color image segmentation
publisher HAL CCSD
publishDate 2015
url https://hal.archives-ouvertes.fr/hal-01104256
https://hal.archives-ouvertes.fr/hal-01104256/document
https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf
https://doi.org/10.1007/978-3-319-18720-4_36
op_coverage Reykjavik, Iceland
genre Iceland
genre_facet Iceland
op_source International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing
https://hal.archives-ouvertes.fr/hal-01104256
International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2015, Reykjavik, Iceland. pp.422-433, ⟨10.1007/978-3-319-18720-4_36⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-18720-4_36
hal-01104256
https://hal.archives-ouvertes.fr/hal-01104256
https://hal.archives-ouvertes.fr/hal-01104256/document
https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf
doi:10.1007/978-3-319-18720-4_36
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1007/978-3-319-18720-4_36
container_start_page 422
op_container_end_page 433
_version_ 1766038689847181312