Bagging Stochastic Watershed on Natural Color Image Segmentation
International audience The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we int...
Main Authors: | , |
---|---|
Other Authors: | , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2015
|
Subjects: | |
Online Access: | https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf https://doi.org/10.1007/978-3-319-18720-4_36 |
id |
ftccsdartic:oai:HAL:hal-01104256v2 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-01104256v2 2023-05-15T16:48:36+02:00 Bagging Stochastic Watershed on Natural Color Image Segmentation Franchi, Gianni Angulo, Jesus Centre de Morphologie Mathématique (CMM) MINES ParisTech - École nationale supérieure des mines de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Reykjavik, Iceland 2015 https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf https://doi.org/10.1007/978-3-319-18720-4_36 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-18720-4_36 hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf doi:10.1007/978-3-319-18720-4_36 info:eu-repo/semantics/OpenAccess International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing https://hal.archives-ouvertes.fr/hal-01104256 International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2015, Reykjavik, Iceland. pp.422-433, ⟨10.1007/978-3-319-18720-4_36⟩ Berkeley segmentation database unsupervised image segmentation stochastic watershed [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] info:eu-repo/semantics/conferenceObject Conference papers 2015 ftccsdartic https://doi.org/10.1007/978-3-319-18720-4_36 2021-11-21T03:12:38Z International audience The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we introduce here a fully unsupervised multi-scale approach including bag-ging. Re-sampling and bagging is a classical stochastic approach to im-prove the estimation. We have assessed the performance, and compared to other version of stochastic watershed, using the Berkeley segmentation database. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) 422 433 |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
Berkeley segmentation database unsupervised image segmentation stochastic watershed [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] |
spellingShingle |
Berkeley segmentation database unsupervised image segmentation stochastic watershed [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] Franchi, Gianni Angulo, Jesus Bagging Stochastic Watershed on Natural Color Image Segmentation |
topic_facet |
Berkeley segmentation database unsupervised image segmentation stochastic watershed [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] |
description |
International audience The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we introduce here a fully unsupervised multi-scale approach including bag-ging. Re-sampling and bagging is a classical stochastic approach to im-prove the estimation. We have assessed the performance, and compared to other version of stochastic watershed, using the Berkeley segmentation database. |
author2 |
Centre de Morphologie Mathématique (CMM) MINES ParisTech - École nationale supérieure des mines de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) |
format |
Conference Object |
author |
Franchi, Gianni Angulo, Jesus |
author_facet |
Franchi, Gianni Angulo, Jesus |
author_sort |
Franchi, Gianni |
title |
Bagging Stochastic Watershed on Natural Color Image Segmentation |
title_short |
Bagging Stochastic Watershed on Natural Color Image Segmentation |
title_full |
Bagging Stochastic Watershed on Natural Color Image Segmentation |
title_fullStr |
Bagging Stochastic Watershed on Natural Color Image Segmentation |
title_full_unstemmed |
Bagging Stochastic Watershed on Natural Color Image Segmentation |
title_sort |
bagging stochastic watershed on natural color image segmentation |
publisher |
HAL CCSD |
publishDate |
2015 |
url |
https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf https://doi.org/10.1007/978-3-319-18720-4_36 |
op_coverage |
Reykjavik, Iceland |
genre |
Iceland |
genre_facet |
Iceland |
op_source |
International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing https://hal.archives-ouvertes.fr/hal-01104256 International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2015, Reykjavik, Iceland. pp.422-433, ⟨10.1007/978-3-319-18720-4_36⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-18720-4_36 hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256 https://hal.archives-ouvertes.fr/hal-01104256/document https://hal.archives-ouvertes.fr/hal-01104256/file/Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf doi:10.1007/978-3-319-18720-4_36 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1007/978-3-319-18720-4_36 |
container_start_page |
422 |
op_container_end_page |
433 |
_version_ |
1766038689847181312 |