The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation

The spatial pattern and potential dynamical origin of the Medieval Climate Anomaly (MCA, around 1000 AD) in Europe are assessed with two recent reconstructions and simulations constrained to follow those reconstructions by means of paleoclimate data assimilation. The simulations employ a climate mod...

Full description

Bibliographic Details
Published in:Global and Planetary Change
Main Authors: Goosse, H, Guiot, Joel, Mann, Me, Dubinkina, S, Sallaz-Damaz, Y
Other Authors: Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00866994
https://doi.org/10.1016/j.gloplacha.2011.07.002
Description
Summary:The spatial pattern and potential dynamical origin of the Medieval Climate Anomaly (MCA, around 1000 AD) in Europe are assessed with two recent reconstructions and simulations constrained to follow those reconstructions by means of paleoclimate data assimilation. The simulations employ a climate model of intermediate complexity (LOVECLIM). The data assimilation technique is based on a particle filter using an ensemble of 96 simulations. The peak winter (and annual mean) warming during the MCA, in our analyses, is found to be strongest at high latitudes, associated with strengthened mid-latitude westerlies. Summer warmth, by contrast, is found to be greatest in southern Europe and the Mediterranean Sea, associated with reduced westerlies and strengthened southerly winds off North Africa. The results of our analysis thus underscore the complexity of the spatial and seasonal structure of the MCA in Europe. (C) 2011 Elsevier B.V. All rights reserved.