Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice

International audience We calculate the nonlinear response of an infinite ice sheet to a moving load in the time domain in two dimensions, using a higher-order spectral method. The nonlinearity is due to the moving boundary, as well as the nonlinear term in Bernoulli's equation and the elastic...

Full description

Bibliographic Details
Published in:Journal of Fluid Mechanics
Main Authors: Bonnefoy, Félicien, Meylan, Michael, Ferrant, Pierre
Other Authors: Laboratoire de mécanique des fluides (LMF), École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics Auckland, University of Auckland Auckland, Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2009
Subjects:
Online Access:https://hal.science/hal-00798968
https://hal.science/hal-00798968/document
https://hal.science/hal-00798968/file/bonnefoy_etal09.pdf
https://doi.org/10.1017/S0022112008004849
id ftccsdartic:oai:HAL:hal-00798968v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-00798968v1 2023-05-15T16:41:06+02:00 Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice Bonnefoy, Félicien Meylan, Michael, Ferrant, Pierre Laboratoire de mécanique des fluides (LMF) École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS) Department of Mathematics Auckland University of Auckland Auckland Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA) 2009 https://hal.science/hal-00798968 https://hal.science/hal-00798968/document https://hal.science/hal-00798968/file/bonnefoy_etal09.pdf https://doi.org/10.1017/S0022112008004849 en eng HAL CCSD Cambridge University Press (CUP) info:eu-repo/semantics/altIdentifier/doi/10.1017/S0022112008004849 hal-00798968 https://hal.science/hal-00798968 https://hal.science/hal-00798968/document https://hal.science/hal-00798968/file/bonnefoy_etal09.pdf doi:10.1017/S0022112008004849 info:eu-repo/semantics/OpenAccess ISSN: 0022-1120 EISSN: 1469-7645 Journal of Fluid Mechanics https://hal.science/hal-00798968 Journal of Fluid Mechanics, 2009, 621, pp.215-242. ⟨10.1017/S0022112008004849⟩ [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] info:eu-repo/semantics/article Journal articles 2009 ftccsdartic https://doi.org/10.1017/S0022112008004849 2023-03-26T22:15:23Z International audience We calculate the nonlinear response of an infinite ice sheet to a moving load in the time domain in two dimensions, using a higher-order spectral method. The nonlinearity is due to the moving boundary, as well as the nonlinear term in Bernoulli's equation and the elastic plate equation. We compare the nonlinear solution with the linear solution and with the nonlinear solution found by Parau & Dias (J. Fluid Mech., vol. 460, 2002, pp. 281–305). We find good agreement with both solutions (with the correction of an error in the Parau & Dias 2002 results) in the appropriate regimes. We also derive a solitary wavelike expression for the linear solution – close to but below the critical speed at which the phase speed has a minimum. Our model is carefully validated and used to investigate nonlinear effects. We focus in detail on the solution at a critical speed at which the linear response is infinite, and we show that the nonlinear solution remains bounded. We also establish that the inclusion of nonlinearities leads to significant new behaviour, which is not observed in the linear solution. Article in Journal/Newspaper Ice Sheet Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Journal of Fluid Mechanics 621 215 242
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
spellingShingle [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
Bonnefoy, Félicien
Meylan, Michael,
Ferrant, Pierre
Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice
topic_facet [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
description International audience We calculate the nonlinear response of an infinite ice sheet to a moving load in the time domain in two dimensions, using a higher-order spectral method. The nonlinearity is due to the moving boundary, as well as the nonlinear term in Bernoulli's equation and the elastic plate equation. We compare the nonlinear solution with the linear solution and with the nonlinear solution found by Parau & Dias (J. Fluid Mech., vol. 460, 2002, pp. 281–305). We find good agreement with both solutions (with the correction of an error in the Parau & Dias 2002 results) in the appropriate regimes. We also derive a solitary wavelike expression for the linear solution – close to but below the critical speed at which the phase speed has a minimum. Our model is carefully validated and used to investigate nonlinear effects. We focus in detail on the solution at a critical speed at which the linear response is infinite, and we show that the nonlinear solution remains bounded. We also establish that the inclusion of nonlinearities leads to significant new behaviour, which is not observed in the linear solution.
author2 Laboratoire de mécanique des fluides (LMF)
École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics Auckland
University of Auckland Auckland
Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA)
format Article in Journal/Newspaper
author Bonnefoy, Félicien
Meylan, Michael,
Ferrant, Pierre
author_facet Bonnefoy, Félicien
Meylan, Michael,
Ferrant, Pierre
author_sort Bonnefoy, Félicien
title Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice
title_short Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice
title_full Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice
title_fullStr Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice
title_full_unstemmed Nonlinear Higher Order Spectral Solution for a Two-Dimensional Moving Load on Ice
title_sort nonlinear higher order spectral solution for a two-dimensional moving load on ice
publisher HAL CCSD
publishDate 2009
url https://hal.science/hal-00798968
https://hal.science/hal-00798968/document
https://hal.science/hal-00798968/file/bonnefoy_etal09.pdf
https://doi.org/10.1017/S0022112008004849
genre Ice Sheet
genre_facet Ice Sheet
op_source ISSN: 0022-1120
EISSN: 1469-7645
Journal of Fluid Mechanics
https://hal.science/hal-00798968
Journal of Fluid Mechanics, 2009, 621, pp.215-242. ⟨10.1017/S0022112008004849⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1017/S0022112008004849
hal-00798968
https://hal.science/hal-00798968
https://hal.science/hal-00798968/document
https://hal.science/hal-00798968/file/bonnefoy_etal09.pdf
doi:10.1017/S0022112008004849
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1017/S0022112008004849
container_title Journal of Fluid Mechanics
container_volume 621
container_start_page 215
op_container_end_page 242
_version_ 1766031534921351168