id ftccsdartic:oai:HAL:hal-00714304v1
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-00714304v1 2023-05-15T18:18:52+02:00 Evaluation of Chemistry-Climate Models using NDACC observations Poulain, Virginie Bekki, Slimane Marchand, Marion Chipperfield, M. STRATO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) School of Earth and Environment Leeds (SEE) University of Leeds Vienna, Austria 2012-04-22 https://hal.archives-ouvertes.fr/hal-00714304 en eng HAL CCSD hal-00714304 https://hal.archives-ouvertes.fr/hal-00714304 BIBCODE: 2012EGUGA.14.3075P EGU General Assembly 2012 https://hal.archives-ouvertes.fr/hal-00714304 EGU General Assembly 2012, Apr 2012, Vienna, Austria [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/conferenceObject Conference papers 2012 ftccsdartic 2021-11-21T04:05:23Z The variability of the stratospheric chemical composition occurs in a broad spectrum of timescales, ranging from day to decades. Some of this variability involves chemistry-climate interactions and is driven by well identified forcings such as the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), volcanic aerosols, solar activity, and changes in halogen loading. The purpose of this study is to estimate the contributions of different forcings in the variability and long-term trend of the stratospheric chemical composition and to test how well 3-D chemistry-climate models (CCMs) can reproduce these relationships. The CCMs were integrated from 1960 to 2006 and forced with time-varying observations of stratospheric volcanic aerosols, solar spectra at the top of the atmosphere, sea surface temperatures (SSTs), sea ice cover (SIC) and GHGs and CFCs concentrations. In our study, we carry out multivariate regression (MLR) analyses on long time series of observations and CCM simulations using CCM forcings (quantified with proxies) as explanatory variables. The observational data is taken from the international NDACC (Network for the Detection of Atmospheric Composition Changes) data series and the CCM simulations are taken from the CCMVal-2 REF1 database. The focus is on the O3, HCl, N2O, HNO3, ClONO2, NO2, and CH4 columns. The aim is to check the consistency between observations and model simulations and identify the driving factors in the evolution of the stratosphere over several NDACC measurement sites. The MLR results for CCMs and NDACC observation are compared. Overall, there is a reasonably good agreement between model and NDACC regression results. In both datasets, a much higher fraction of the variability is explained by the proxies in the tropics than in the extratropics, in particular polar regions. For ozone, the QBO and solar signal dominate in the tropics whereas the trend signals appears to be more important in the polar regions For tracer species (N2O, CH4), the dominant term in the ... Conference Object Sea ice Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
spellingShingle [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Poulain, Virginie
Bekki, Slimane
Marchand, Marion
Chipperfield, M.
Evaluation of Chemistry-Climate Models using NDACC observations
topic_facet [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
description The variability of the stratospheric chemical composition occurs in a broad spectrum of timescales, ranging from day to decades. Some of this variability involves chemistry-climate interactions and is driven by well identified forcings such as the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), volcanic aerosols, solar activity, and changes in halogen loading. The purpose of this study is to estimate the contributions of different forcings in the variability and long-term trend of the stratospheric chemical composition and to test how well 3-D chemistry-climate models (CCMs) can reproduce these relationships. The CCMs were integrated from 1960 to 2006 and forced with time-varying observations of stratospheric volcanic aerosols, solar spectra at the top of the atmosphere, sea surface temperatures (SSTs), sea ice cover (SIC) and GHGs and CFCs concentrations. In our study, we carry out multivariate regression (MLR) analyses on long time series of observations and CCM simulations using CCM forcings (quantified with proxies) as explanatory variables. The observational data is taken from the international NDACC (Network for the Detection of Atmospheric Composition Changes) data series and the CCM simulations are taken from the CCMVal-2 REF1 database. The focus is on the O3, HCl, N2O, HNO3, ClONO2, NO2, and CH4 columns. The aim is to check the consistency between observations and model simulations and identify the driving factors in the evolution of the stratosphere over several NDACC measurement sites. The MLR results for CCMs and NDACC observation are compared. Overall, there is a reasonably good agreement between model and NDACC regression results. In both datasets, a much higher fraction of the variability is explained by the proxies in the tropics than in the extratropics, in particular polar regions. For ozone, the QBO and solar signal dominate in the tropics whereas the trend signals appears to be more important in the polar regions For tracer species (N2O, CH4), the dominant term in the ...
author2 STRATO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
School of Earth and Environment Leeds (SEE)
University of Leeds
format Conference Object
author Poulain, Virginie
Bekki, Slimane
Marchand, Marion
Chipperfield, M.
author_facet Poulain, Virginie
Bekki, Slimane
Marchand, Marion
Chipperfield, M.
author_sort Poulain, Virginie
title Evaluation of Chemistry-Climate Models using NDACC observations
title_short Evaluation of Chemistry-Climate Models using NDACC observations
title_full Evaluation of Chemistry-Climate Models using NDACC observations
title_fullStr Evaluation of Chemistry-Climate Models using NDACC observations
title_full_unstemmed Evaluation of Chemistry-Climate Models using NDACC observations
title_sort evaluation of chemistry-climate models using ndacc observations
publisher HAL CCSD
publishDate 2012
url https://hal.archives-ouvertes.fr/hal-00714304
op_coverage Vienna, Austria
genre Sea ice
genre_facet Sea ice
op_source EGU General Assembly 2012
https://hal.archives-ouvertes.fr/hal-00714304
EGU General Assembly 2012, Apr 2012, Vienna, Austria
op_relation hal-00714304
https://hal.archives-ouvertes.fr/hal-00714304
BIBCODE: 2012EGUGA.14.3075P
_version_ 1766195611270381568