Chemistry-climate model simulations of spring Antarctic ozone

International audience Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montr...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Austin, J., Struthers, H., Scinocca, J., Plummer, D. A., Akiyoshi, H., Baumgaertner, A., Bekki, Slimane, Bodeker, G., Braesicke, P., Bruhl, C., Butchart, N., Chipperfield, M. P., Cugnet, David, Dameris, M., Dhomse, S., Frith, S., Garny, H., Gettelman, A., Hardiman, S. C., Jockel, P., Kinnison, D., Kubin, A., Lamarque, J. F., Langematz, U., Mancini, E., Marchand, Marion, Michou, M., Morgenstern, Olaf, Nakamura, T., Nielsen, J. E., Pitari, G., Pyle, J., Rozanov, E., Shepherd, T. G., Shibata, K., Smale, Dan, Teyssedre, H., Yamashita, Y.
Other Authors: NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), University Corporation for Atmospheric Research (UCAR), Stockholm University, Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, National Institute for Environmental Studies (NIES), Max Planck Institute for Chemistry (MPIC), Max-Planck-Gesellschaft, STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Bodeker Scientific, NCAS-Climate Cambridge, Department of Chemistry Cambridge, UK, University of Cambridge UK (CAM)-University of Cambridge UK (CAM), United Kingdom Met Office Exeter, School of Earth and Environment Leeds (SEE), University of Leeds, DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR), NASA Goddard Space Flight Center (GSFC), Science Systems and Applications, Inc. Lanham (SSAI), National Center for Atmospheric Research Boulder (NCAR), Institut für Meteorologie Berlin, Freie Universität Berlin, University of L'Aquila Italy (UNIVAQ), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), National Institute of Water and Atmospheric Research Lauder (NIWA), Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Institute for Atmospheric and Climate Science Zürich (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Physics Toronto, University of Toronto, Meteorological Research Institute Tsukuba (MRI), Japan Meteorological Agency (JMA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00510726
https://hal.archives-ouvertes.fr/hal-00510726/document
https://hal.archives-ouvertes.fr/hal-00510726/file/2009JD013577.pdf
https://doi.org/10.1029/2009JD013577
Description
Summary:International audience Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070.