Estimation of Antarctic ozone loss from ground-based total column measurements

International audience The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Hei...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Kuttippurath, Jayanarayanan, Goutail, Florence, Pommereau, Jean-Pierre, Lefèvre, Franck, Roscoe, H. K., Pazmino, Andrea, Feng, W., Chipperfield, M. P., Godin-Beekmann, Sophie
Other Authors: STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), School of Earth and Environment Leeds (SEE), University of Leeds
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00469607
https://hal.archives-ouvertes.fr/hal-00469607/document
https://hal.archives-ouvertes.fr/hal-00469607/file/acp-10-6569-2010.pdf
https://doi.org/10.5194/acp-10-6569-2010
Description
Summary:International audience The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005-2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT), where the differences are within ±3-5%. The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20-50% is observed for a few days in October-November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October-November and at Macquarie Island in July-August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.