Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment
International audience Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were col...
Main Authors: | , , , |
---|---|
Other Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2006
|
Subjects: | |
Online Access: | https://hal.science/hal-00295935 https://hal.science/hal-00295935/document https://hal.science/hal-00295935/file/acp-6-1977-2006.pdf |
id |
ftccsdartic:oai:HAL:hal-00295935v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:hal-00295935v1 2023-11-12T04:13:58+01:00 Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment Targino, A. C. Krejci, R. Noone, K. J. Glantz, P. Department of Meteorology Stockholm University IGBP Secretariat Royal Swedish Academy of Sciences 2006-06-08 https://hal.science/hal-00295935 https://hal.science/hal-00295935/document https://hal.science/hal-00295935/file/acp-6-1977-2006.pdf en eng HAL CCSD European Geosciences Union hal-00295935 https://hal.science/hal-00295935 https://hal.science/hal-00295935/document https://hal.science/hal-00295935/file/acp-6-1977-2006.pdf info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://hal.science/hal-00295935 Atmospheric Chemistry and Physics, 2006, 6 (7), pp.1977-1990 [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2006 ftccsdartic 2023-10-21T23:17:19Z International audience Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 ?m diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around ?27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles represent significant ... Article in Journal/Newspaper Arctic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Hercules ENVELOPE(161.450,161.450,-77.483,-77.483) |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
spellingShingle |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Targino, A. C. Krejci, R. Noone, K. J. Glantz, P. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment |
topic_facet |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
description |
International audience Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 ?m diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around ?27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles represent significant ... |
author2 |
Department of Meteorology Stockholm University IGBP Secretariat Royal Swedish Academy of Sciences |
format |
Article in Journal/Newspaper |
author |
Targino, A. C. Krejci, R. Noone, K. J. Glantz, P. |
author_facet |
Targino, A. C. Krejci, R. Noone, K. J. Glantz, P. |
author_sort |
Targino, A. C. |
title |
Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment |
title_short |
Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment |
title_full |
Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment |
title_fullStr |
Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment |
title_full_unstemmed |
Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment |
title_sort |
single particle analysis of ice crystal residuals observed in orographic wave clouds over scandinavia during intacc experiment |
publisher |
HAL CCSD |
publishDate |
2006 |
url |
https://hal.science/hal-00295935 https://hal.science/hal-00295935/document https://hal.science/hal-00295935/file/acp-6-1977-2006.pdf |
long_lat |
ENVELOPE(161.450,161.450,-77.483,-77.483) |
geographic |
Arctic Hercules |
geographic_facet |
Arctic Hercules |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://hal.science/hal-00295935 Atmospheric Chemistry and Physics, 2006, 6 (7), pp.1977-1990 |
op_relation |
hal-00295935 https://hal.science/hal-00295935 https://hal.science/hal-00295935/document https://hal.science/hal-00295935/file/acp-6-1977-2006.pdf |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1782331732958117888 |