A satellite snow depth multi-year average derived from SSM/I for the high latitude regions

The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal me...

Full description

Bibliographic Details
Published in:Remote Sensing of Environment
Main Authors: Biancamaria, Sylvain, Mognard, Nelly, Boone, Aaron, Grippa, Manuela, Josberger, Edward
Other Authors: Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS), US Geological Survey Tacoma, United States Geological Survey Reston (USGS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00284672
https://doi.org/10.1016/j.rse.2007.12.002
id ftccsdartic:oai:HAL:hal-00284672v1
record_format openpolar
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic Taiga
Lakes
SSM/I
GSWP2
Snow depth
High latitude regions
ALGORITHM
CLIMATOLOGY
PARAMETERS
COVER
LAND-SURFACE
WESTERN CANADA
NORTHERN GREAT-PLAINS
PASSIVE-MICROWAVE DATA
SIMULATIONS
Tundra
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
spellingShingle Taiga
Lakes
SSM/I
GSWP2
Snow depth
High latitude regions
ALGORITHM
CLIMATOLOGY
PARAMETERS
COVER
LAND-SURFACE
WESTERN CANADA
NORTHERN GREAT-PLAINS
PASSIVE-MICROWAVE DATA
SIMULATIONS
Tundra
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
Biancamaria, Sylvain
Mognard, Nelly
Boone, Aaron
Grippa, Manuela
Josberger, Edward
A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
topic_facet Taiga
Lakes
SSM/I
GSWP2
Snow depth
High latitude regions
ALGORITHM
CLIMATOLOGY
PARAMETERS
COVER
LAND-SURFACE
WESTERN CANADA
NORTHERN GREAT-PLAINS
PASSIVE-MICROWAVE DATA
SIMULATIONS
Tundra
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
description The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987–1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is −0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient −0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America (where the correlation coefficient decreases to ...
author2 Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS)
Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)
Groupe d'étude de l'atmosphère météorologique (CNRM-GAME)
Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Centre d'études spatiales de la biosphère (CESBIO)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)
US Geological Survey Tacoma
United States Geological Survey Reston (USGS)
format Article in Journal/Newspaper
author Biancamaria, Sylvain
Mognard, Nelly
Boone, Aaron
Grippa, Manuela
Josberger, Edward
author_facet Biancamaria, Sylvain
Mognard, Nelly
Boone, Aaron
Grippa, Manuela
Josberger, Edward
author_sort Biancamaria, Sylvain
title A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
title_short A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
title_full A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
title_fullStr A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
title_full_unstemmed A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
title_sort satellite snow depth multi-year average derived from ssm/i for the high latitude regions
publisher HAL CCSD
publishDate 2008
url https://hal.archives-ouvertes.fr/hal-00284672
https://doi.org/10.1016/j.rse.2007.12.002
geographic Arctic
Canada
geographic_facet Arctic
Canada
genre Arctic
taiga
Tundra
Siberia
genre_facet Arctic
taiga
Tundra
Siberia
op_source ISSN: 0034-4257
EISSN: 1879-0704
Remote Sensing of Environment
https://hal.archives-ouvertes.fr/hal-00284672
Remote Sensing of Environment, Elsevier, 2008, 112 (5), pp.2557-2568. ⟨10.1016/j.rse.2007.12.002⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2007.12.002
hal-00284672
https://hal.archives-ouvertes.fr/hal-00284672
doi:10.1016/j.rse.2007.12.002
op_doi https://doi.org/10.1016/j.rse.2007.12.002
container_title Remote Sensing of Environment
container_volume 112
container_issue 5
container_start_page 2557
op_container_end_page 2568
_version_ 1766349104444604416
spelling ftccsdartic:oai:HAL:hal-00284672v1 2023-05-15T15:18:56+02:00 A satellite snow depth multi-year average derived from SSM/I for the high latitude regions Biancamaria, Sylvain Mognard, Nelly Boone, Aaron Grippa, Manuela Josberger, Edward Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP) Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS) Groupe d'étude de l'atmosphère météorologique (CNRM-GAME) Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS) Centre d'études spatiales de la biosphère (CESBIO) Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS) US Geological Survey Tacoma United States Geological Survey Reston (USGS) 2008-05-15 https://hal.archives-ouvertes.fr/hal-00284672 https://doi.org/10.1016/j.rse.2007.12.002 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2007.12.002 hal-00284672 https://hal.archives-ouvertes.fr/hal-00284672 doi:10.1016/j.rse.2007.12.002 ISSN: 0034-4257 EISSN: 1879-0704 Remote Sensing of Environment https://hal.archives-ouvertes.fr/hal-00284672 Remote Sensing of Environment, Elsevier, 2008, 112 (5), pp.2557-2568. ⟨10.1016/j.rse.2007.12.002⟩ Taiga Lakes SSM/I GSWP2 Snow depth High latitude regions ALGORITHM CLIMATOLOGY PARAMETERS COVER LAND-SURFACE WESTERN CANADA NORTHERN GREAT-PLAINS PASSIVE-MICROWAVE DATA SIMULATIONS Tundra [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2008 ftccsdartic https://doi.org/10.1016/j.rse.2007.12.002 2021-06-20T00:38:46Z The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987–1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is −0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient −0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America (where the correlation coefficient decreases to ... Article in Journal/Newspaper Arctic taiga Tundra Siberia Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Canada Remote Sensing of Environment 112 5 2557 2568