Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing

International audience An original experimental set-up was developed and used for studying crystallization and rheology of methane hydrate/water/dodecane system. Methane is injected in a water in dodecane emulsion at low temperature and high pressure in order to form methane hydrate crystals and to...

Full description

Bibliographic Details
Published in:Chemical Engineering Science
Main Authors: Fidel-Dufour, Annie, Gruy, Frédéric, Herri, Jean-Michel
Other Authors: Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2006
Subjects:
Online Access:https://hal-emse.ccsd.cnrs.fr/emse-03763489
https://hal-emse.ccsd.cnrs.fr/emse-03763489/document
https://hal-emse.ccsd.cnrs.fr/emse-03763489/file/FG%20Chemical%20Engineering%20Science%202006.pdf
https://doi.org/10.1016/j.ces.2005.07.001
Description
Summary:International audience An original experimental set-up was developed and used for studying crystallization and rheology of methane hydrate/water/dodecane system. Methane is injected in a water in dodecane emulsion at low temperature and high pressure in order to form methane hydrate crystals and to move the suspension by gas lift. It behaves as a Newtonian fluid. Dynamic viscosity and conversion of water and gas into gas hydrate crystals were measured during the process for various water contents. Experimental results were explained by means of a model including nucleation, growth and agglomeration. Due to the high value of crystal and drop concentrations, agglomeration takes place through three-body collisions between one water drop and two already formed agglomerates. Resulting agglomerates were considered as fractal-like ones. During crystallization and agglomeration, the effective volume fraction of drops and porous agglomerates is increased, and then suspension viscosity increases. When all water drops are crystallized, agglomeration stops and viscosity does not change.