Dimers on Rail Yard Graphs
International audience We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspo...
Published in: | Annales de l’Institut Henri Poincaré D |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2017
|
Subjects: | |
Online Access: | https://hal-cea.archives-ouvertes.fr/cea-01144118 https://doi.org/10.4171/AIHPD/46 |
id |
ftccsdartic:oai:HAL:cea-01144118v1 |
---|---|
record_format |
openpolar |
spelling |
ftccsdartic:oai:HAL:cea-01144118v1 2023-05-15T15:05:01+02:00 Dimers on Rail Yard Graphs Boutillier, Cédric Bouttier, Jérémie Chapuy, Guillaume Corteel, Sylvie Ramassamy, Sanjay Laboratoire de Probabilités et Modèles Aléatoires (LPMA) Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC) Institut de Physique Théorique - UMR CNRS 3681 (IPHT) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Département de Mathématiques et Applications - ENS Paris (DMA) Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA) Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) Department of Mathematics Brown University Projet Combinatoire à Paris (Ville de Paris) Monahan Foundation ANR-08-JCJC-0011,Icomb(2008) ANR-10-BLAN-0123,MAC2,Modèles aléatoires critiques bi-dimensionnels(2010) ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012) ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014) 2017 https://hal-cea.archives-ouvertes.fr/cea-01144118 https://doi.org/10.4171/AIHPD/46 en eng HAL CCSD European Mathematical Society info:eu-repo/semantics/altIdentifier/arxiv/1504.05176 info:eu-repo/semantics/altIdentifier/doi/10.4171/AIHPD/46 cea-01144118 https://hal-cea.archives-ouvertes.fr/cea-01144118 ARXIV: 1504.05176 doi:10.4171/AIHPD/46 ISSN: 2308-5827 Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions https://hal-cea.archives-ouvertes.fr/cea-01144118 Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, 2017, 4 (4), pp.479-539. ⟨10.4171/AIHPD/46⟩ [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] info:eu-repo/semantics/article Journal articles 2017 ftccsdartic https://doi.org/10.4171/AIHPD/46 2021-12-19T02:56:05Z International audience We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions. Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wick's theorem. Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem. Article in Journal/Newspaper Arctic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Pyramid ENVELOPE(157.300,157.300,-81.333,-81.333) Annales de l’Institut Henri Poincaré D 4 4 479 539 |
institution |
Open Polar |
collection |
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) |
op_collection_id |
ftccsdartic |
language |
English |
topic |
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] |
spellingShingle |
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Boutillier, Cédric Bouttier, Jérémie Chapuy, Guillaume Corteel, Sylvie Ramassamy, Sanjay Dimers on Rail Yard Graphs |
topic_facet |
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] |
description |
International audience We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions. Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wick's theorem. Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem. |
author2 |
Laboratoire de Probabilités et Modèles Aléatoires (LPMA) Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC) Institut de Physique Théorique - UMR CNRS 3681 (IPHT) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Département de Mathématiques et Applications - ENS Paris (DMA) Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA) Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) Department of Mathematics Brown University Projet Combinatoire à Paris (Ville de Paris) Monahan Foundation ANR-08-JCJC-0011,Icomb(2008) ANR-10-BLAN-0123,MAC2,Modèles aléatoires critiques bi-dimensionnels(2010) ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012) ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014) |
format |
Article in Journal/Newspaper |
author |
Boutillier, Cédric Bouttier, Jérémie Chapuy, Guillaume Corteel, Sylvie Ramassamy, Sanjay |
author_facet |
Boutillier, Cédric Bouttier, Jérémie Chapuy, Guillaume Corteel, Sylvie Ramassamy, Sanjay |
author_sort |
Boutillier, Cédric |
title |
Dimers on Rail Yard Graphs |
title_short |
Dimers on Rail Yard Graphs |
title_full |
Dimers on Rail Yard Graphs |
title_fullStr |
Dimers on Rail Yard Graphs |
title_full_unstemmed |
Dimers on Rail Yard Graphs |
title_sort |
dimers on rail yard graphs |
publisher |
HAL CCSD |
publishDate |
2017 |
url |
https://hal-cea.archives-ouvertes.fr/cea-01144118 https://doi.org/10.4171/AIHPD/46 |
long_lat |
ENVELOPE(157.300,157.300,-81.333,-81.333) |
geographic |
Arctic Pyramid |
geographic_facet |
Arctic Pyramid |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
ISSN: 2308-5827 Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions https://hal-cea.archives-ouvertes.fr/cea-01144118 Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, 2017, 4 (4), pp.479-539. ⟨10.4171/AIHPD/46⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/arxiv/1504.05176 info:eu-repo/semantics/altIdentifier/doi/10.4171/AIHPD/46 cea-01144118 https://hal-cea.archives-ouvertes.fr/cea-01144118 ARXIV: 1504.05176 doi:10.4171/AIHPD/46 |
op_doi |
https://doi.org/10.4171/AIHPD/46 |
container_title |
Annales de l’Institut Henri Poincaré D |
container_volume |
4 |
container_issue |
4 |
container_start_page |
479 |
op_container_end_page |
539 |
_version_ |
1766336789049507840 |