Dimers on Rail Yard Graphs

International audience We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspo...

Full description

Bibliographic Details
Published in:Annales de l’Institut Henri Poincaré D
Main Authors: Boutillier, Cédric, Bouttier, Jérémie, Chapuy, Guillaume, Corteel, Sylvie, Ramassamy, Sanjay
Other Authors: Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, Brown University, Projet Combinatoire à Paris (Ville de Paris), Monahan Foundation, ANR-08-JCJC-0011,Icomb(2008), ANR-10-BLAN-0123,MAC2,Modèles aléatoires critiques bi-dimensionnels(2010), ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal-cea.archives-ouvertes.fr/cea-01144118
https://doi.org/10.4171/AIHPD/46
id ftccsdartic:oai:HAL:cea-01144118v1
record_format openpolar
spelling ftccsdartic:oai:HAL:cea-01144118v1 2023-05-15T15:05:01+02:00 Dimers on Rail Yard Graphs Boutillier, Cédric Bouttier, Jérémie Chapuy, Guillaume Corteel, Sylvie Ramassamy, Sanjay Laboratoire de Probabilités et Modèles Aléatoires (LPMA) Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC) Institut de Physique Théorique - UMR CNRS 3681 (IPHT) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Département de Mathématiques et Applications - ENS Paris (DMA) Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA) Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) Department of Mathematics Brown University Projet Combinatoire à Paris (Ville de Paris) Monahan Foundation ANR-08-JCJC-0011,Icomb(2008) ANR-10-BLAN-0123,MAC2,Modèles aléatoires critiques bi-dimensionnels(2010) ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012) ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014) 2017 https://hal-cea.archives-ouvertes.fr/cea-01144118 https://doi.org/10.4171/AIHPD/46 en eng HAL CCSD European Mathematical Society info:eu-repo/semantics/altIdentifier/arxiv/1504.05176 info:eu-repo/semantics/altIdentifier/doi/10.4171/AIHPD/46 cea-01144118 https://hal-cea.archives-ouvertes.fr/cea-01144118 ARXIV: 1504.05176 doi:10.4171/AIHPD/46 ISSN: 2308-5827 Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions https://hal-cea.archives-ouvertes.fr/cea-01144118 Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, 2017, 4 (4), pp.479-539. ⟨10.4171/AIHPD/46⟩ [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] info:eu-repo/semantics/article Journal articles 2017 ftccsdartic https://doi.org/10.4171/AIHPD/46 2021-12-19T02:56:05Z International audience We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions. Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wick's theorem. Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem. Article in Journal/Newspaper Arctic Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Arctic Pyramid ENVELOPE(157.300,157.300,-81.333,-81.333) Annales de l’Institut Henri Poincaré D 4 4 479 539
institution Open Polar
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
op_collection_id ftccsdartic
language English
topic [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
spellingShingle [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Boutillier, Cédric
Bouttier, Jérémie
Chapuy, Guillaume
Corteel, Sylvie
Ramassamy, Sanjay
Dimers on Rail Yard Graphs
topic_facet [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
description International audience We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions. Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wick's theorem. Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem.
author2 Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Département de Mathématiques et Applications - ENS Paris (DMA)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics
Brown University
Projet Combinatoire à Paris (Ville de Paris)
Monahan Foundation
ANR-08-JCJC-0011,Icomb(2008)
ANR-10-BLAN-0123,MAC2,Modèles aléatoires critiques bi-dimensionnels(2010)
ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012)
ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014)
format Article in Journal/Newspaper
author Boutillier, Cédric
Bouttier, Jérémie
Chapuy, Guillaume
Corteel, Sylvie
Ramassamy, Sanjay
author_facet Boutillier, Cédric
Bouttier, Jérémie
Chapuy, Guillaume
Corteel, Sylvie
Ramassamy, Sanjay
author_sort Boutillier, Cédric
title Dimers on Rail Yard Graphs
title_short Dimers on Rail Yard Graphs
title_full Dimers on Rail Yard Graphs
title_fullStr Dimers on Rail Yard Graphs
title_full_unstemmed Dimers on Rail Yard Graphs
title_sort dimers on rail yard graphs
publisher HAL CCSD
publishDate 2017
url https://hal-cea.archives-ouvertes.fr/cea-01144118
https://doi.org/10.4171/AIHPD/46
long_lat ENVELOPE(157.300,157.300,-81.333,-81.333)
geographic Arctic
Pyramid
geographic_facet Arctic
Pyramid
genre Arctic
genre_facet Arctic
op_source ISSN: 2308-5827
Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions
https://hal-cea.archives-ouvertes.fr/cea-01144118
Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, 2017, 4 (4), pp.479-539. ⟨10.4171/AIHPD/46⟩
op_relation info:eu-repo/semantics/altIdentifier/arxiv/1504.05176
info:eu-repo/semantics/altIdentifier/doi/10.4171/AIHPD/46
cea-01144118
https://hal-cea.archives-ouvertes.fr/cea-01144118
ARXIV: 1504.05176
doi:10.4171/AIHPD/46
op_doi https://doi.org/10.4171/AIHPD/46
container_title Annales de l’Institut Henri Poincaré D
container_volume 4
container_issue 4
container_start_page 479
op_container_end_page 539
_version_ 1766336789049507840