Planning for Sun-Synchronous Lunar Polar Roving

Lunar polar resources can accelerate deep space exploration by resupplying missions with oxygen, water, and propellent. Before lunar resupply can be established, the distribution and concentration of water ice and other volatiles abundant at the poles of the Moon must be verified and mapped. The nee...

Full description

Bibliographic Details
Main Author: Nathan D. Otten
Format: Thesis
Language:unknown
Published: 2018
Subjects:
Online Access:https://doi.org/10.1184/r1/6721082.v1
https://figshare.com/articles/Planning_for_Sun-Synchronous_Lunar_Polar_Roving/6721082
id ftcarnmellonufig:oai:figshare.com:article/6721082
record_format openpolar
spelling ftcarnmellonufig:oai:figshare.com:article/6721082 2023-05-15T18:23:10+02:00 Planning for Sun-Synchronous Lunar Polar Roving Nathan D. Otten 2018-07-01T00:55:33Z https://doi.org/10.1184/r1/6721082.v1 https://figshare.com/articles/Planning_for_Sun-Synchronous_Lunar_Polar_Roving/6721082 unknown doi:10.1184/r1/6721082.v1 https://figshare.com/articles/Planning_for_Sun-Synchronous_Lunar_Polar_Roving/6721082 In Copyright Adaptive Agents and Intelligent Robotics Robotics Institute Text Thesis 2018 ftcarnmellonufig https://doi.org/10.1184/r1/6721082.v1 2019-11-18T10:33:05Z Lunar polar resources can accelerate deep space exploration by resupplying missions with oxygen, water, and propellent. Before lunar resupply can be established, the distribution and concentration of water ice and other volatiles abundant at the poles of the Moon must be verified and mapped. The need for aordable, scalable exploration of the lunar poles motivates the deployment of solar-powered rovers and planning strategies that sustain robotic missions beyond a single two-week period of lunar daylight. Reliance on solar power at the lunar poles gives rise to significant challenges| and opportunities|for individual rovers to achieve multi-lunar-day longevity. Solarpowered rovers require persistent sunlight for power and heat, lest they succumb to the cryogenic temperatures of lunar night. Although constrained by thermal conditions and available power, opportunistic polar rovers can maintain warmth and ample solar power for several months by following sun-synchronous routes. Strategic, informed route planning that exploits polar lighting enables sustained lunar polar roving and resource prospecting not possible by other means. This research develops polar roving strategies and applies global path planning methods to generate spatiotemporal routes that provide multiple lunar days of uninterrupted sunlight while satisfying constraints on rover speed, terrain slope, and direct-to-Earth communication. The existence of feasible sun-synchronous routes on the South Pole of the Moon is demonstrated by proof-of-concept examples that last multiple lunar days. These are generated using spatiotemporal predictive models of dynamic surface illumination and Earth view based on ephemeris data and global topographic maps derived from Lunar Orbiter Laser Altimeter data. In addition, this research addresses issues of route robustness. Predictive model uncertainty stemming from topographic measurement error presents substantial risk to rovers dwelling at predicted local peaks of persistent sunlight. This thesis presents a strategy ... Thesis South pole KiltHub Research from Carnegie Mellon University South Pole
institution Open Polar
collection KiltHub Research from Carnegie Mellon University
op_collection_id ftcarnmellonufig
language unknown
topic Adaptive Agents and Intelligent Robotics
Robotics Institute
spellingShingle Adaptive Agents and Intelligent Robotics
Robotics Institute
Nathan D. Otten
Planning for Sun-Synchronous Lunar Polar Roving
topic_facet Adaptive Agents and Intelligent Robotics
Robotics Institute
description Lunar polar resources can accelerate deep space exploration by resupplying missions with oxygen, water, and propellent. Before lunar resupply can be established, the distribution and concentration of water ice and other volatiles abundant at the poles of the Moon must be verified and mapped. The need for aordable, scalable exploration of the lunar poles motivates the deployment of solar-powered rovers and planning strategies that sustain robotic missions beyond a single two-week period of lunar daylight. Reliance on solar power at the lunar poles gives rise to significant challenges| and opportunities|for individual rovers to achieve multi-lunar-day longevity. Solarpowered rovers require persistent sunlight for power and heat, lest they succumb to the cryogenic temperatures of lunar night. Although constrained by thermal conditions and available power, opportunistic polar rovers can maintain warmth and ample solar power for several months by following sun-synchronous routes. Strategic, informed route planning that exploits polar lighting enables sustained lunar polar roving and resource prospecting not possible by other means. This research develops polar roving strategies and applies global path planning methods to generate spatiotemporal routes that provide multiple lunar days of uninterrupted sunlight while satisfying constraints on rover speed, terrain slope, and direct-to-Earth communication. The existence of feasible sun-synchronous routes on the South Pole of the Moon is demonstrated by proof-of-concept examples that last multiple lunar days. These are generated using spatiotemporal predictive models of dynamic surface illumination and Earth view based on ephemeris data and global topographic maps derived from Lunar Orbiter Laser Altimeter data. In addition, this research addresses issues of route robustness. Predictive model uncertainty stemming from topographic measurement error presents substantial risk to rovers dwelling at predicted local peaks of persistent sunlight. This thesis presents a strategy ...
format Thesis
author Nathan D. Otten
author_facet Nathan D. Otten
author_sort Nathan D. Otten
title Planning for Sun-Synchronous Lunar Polar Roving
title_short Planning for Sun-Synchronous Lunar Polar Roving
title_full Planning for Sun-Synchronous Lunar Polar Roving
title_fullStr Planning for Sun-Synchronous Lunar Polar Roving
title_full_unstemmed Planning for Sun-Synchronous Lunar Polar Roving
title_sort planning for sun-synchronous lunar polar roving
publishDate 2018
url https://doi.org/10.1184/r1/6721082.v1
https://figshare.com/articles/Planning_for_Sun-Synchronous_Lunar_Polar_Roving/6721082
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_relation doi:10.1184/r1/6721082.v1
https://figshare.com/articles/Planning_for_Sun-Synchronous_Lunar_Polar_Roving/6721082
op_rights In Copyright
op_doi https://doi.org/10.1184/r1/6721082.v1
_version_ 1766202706906578944