Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere

Feedbacks between the climate system and the high-latitude carbon cycle will substantially influence the intensity of future climate change. It is therefore crucial that the net ecosystem exchange of CO2 (NEE) between the high-latitude land surface and the atmosphere is accurately quantified, where...

Full description

Bibliographic Details
Main Author: Luus, Kristina
Format: Thesis
Language:English
Published: 2013
Subjects:
CO2
Online Access:http://hdl.handle.net/10012/7591
id ftcanadathes:oai:collectionscanada.gc.ca:OWTU.10012/7591
record_format openpolar
institution Open Polar
collection Theses Canada/Thèses Canada (Library and Archives Canada)
op_collection_id ftcanadathes
language English
topic Arctic
CO2
Carbon balance
Model
Remote sensing
Net ecosystem exchange
Snow
Biogeoscience
spellingShingle Arctic
CO2
Carbon balance
Model
Remote sensing
Net ecosystem exchange
Snow
Biogeoscience
Luus, Kristina
Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere
topic_facet Arctic
CO2
Carbon balance
Model
Remote sensing
Net ecosystem exchange
Snow
Biogeoscience
description Feedbacks between the climate system and the high-latitude carbon cycle will substantially influence the intensity of future climate change. It is therefore crucial that the net ecosystem exchange of CO2 (NEE) between the high-latitude land surface and the atmosphere is accurately quantified, where NEE refers to the difference between ecosystem respiration (R) and photosynthesis (gross ecosystem exchange, GEE): NEE=-GEE+R in umol/m^2/s. NEE can only be directly measured over areas of 1 km^2 through eddy covariance, and modeling approaches such as the Vegetation Photosynthesis Respiration Model (VPRM) are required to upscale NEE. VPRM is a remote sensing based model that calculates R as a linear function of air temperature (Ta) when air temperature is above a given threshold (Tlow), and sets respiration to a constant value when Ta 50%, and as a linear function of air temperature when SCA<50%, thereby reflecting the influence of snow on decoupling soil/air temperatures. Representing the effect of SCA on NEE therefore reduced uncertainty in VPRM estimates of NEE. In order to represent spatial variability in high-latitude estimates of NEE due to vegetation type, Arctic-specific vegetation classes were created for PolarVPRM by combining and aggregating two existing vegetation classifications: the Synergetic Land Cover Product and the Circumpolar Arctic Vegetation Map. Levene's test indicated that the PolarVPRM vegetation classes divided the pan-Arctic region into heterogeneous distributions in terms of net primary productivity, and passive microwave derived estimates of snow and growing season influences on NEE. A non-parametric statistical approach of Alternating Conditional Expectations found significant, non-linear associations to exist between passive microwave derived estimates of snow and growing season drivers of NEE. Furthermore, the shape of these associations varied according to the vegetation class over which they were examined. Further support was therefore provided to the idea that uncertainty in model estimates of NEE could be reduced by calculating snow and growing season NEE separately within each vegetation class. PolarVPRM estimates of NEE in 2001-2012 were generated at a three hourly and 1/6 x 1/4 degree resolution across polar North America (55-170 W, 55-83 N). Model calibration was conducted over three sites: Daring Lake, Ivotuk, and Atqasuk, Alaska, USA. Model validation was then conducted by comparing PolarVPRM estimates of year-round daily average NEE to non-gap-filled eddy covariance observations of daily average NEE acquired over the three calibration sites, as well as six other Arctic sites. PolarVPRM performed well over all sites, with an average mean absolute error (MAE) of 0.20 umol/m^2/s, and had diminished error rates when the influence of SCA on respiration was explicitly represented. Error analysis indicated that peak growing season GEE was underestimated at Barrow because GEE at this site showed a stronger response to the amount of incoming shortwave radiation than at the calibration site, suggesting that PolarVPRM may underestimate GEE over wetland and barren vegetated regions. Despite these uncertainties, PolarVPRM was found to generate more accurate estimates of monthly and three-hourly NEE relative to eddy covariance observations than two established models, FLUXNET Model-Tree Ensemble (MTE) and CarbonTracker. Relative to eddy covariance observations and PolarVPRM estimates, MTE tended to overestimate snow season respiration, and CarbonTracker tended to overestimate the amount of midday photosynthesis. Analysis of PolarVPRM output across North America (north of 55 N) found an increase in net annual carbon efflux over over time (2001-2012). Specifically, increased rates of respiration are estimated when soil and air temperatures are warmer. Although increases in growing season vegetation indices and air temperature enable greater photosynthetic uptake by Arctic vegetation, forests and shrublands uptake less CO2 in the middle of the growing season when air temperatures rise above the physiological optima for photosynthesis. As a result, PolarVPRM estimated a decline in net photosynthetic uptake over time. Overall, PolarVPRM output indicates that North American regions north of 55 N are losing strength as a carbon sink in response to rising air temperatures.
format Thesis
author Luus, Kristina
author_facet Luus, Kristina
author_sort Luus, Kristina
title Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere
title_short Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere
title_full Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere
title_fullStr Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere
title_full_unstemmed Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere
title_sort improving estimates of net ecosystem co2 exchange between the arctic land surface and the atmosphere
publishDate 2013
url http://hdl.handle.net/10012/7591
long_lat ENVELOPE(-111.635,-111.635,64.834,64.834)
geographic Arctic
Daring Lake
geographic_facet Arctic
Daring Lake
genre Arctic
Barrow
Climate change
Alaska
genre_facet Arctic
Barrow
Climate change
Alaska
op_relation http://hdl.handle.net/10012/7591
_version_ 1766326800956260352
spelling ftcanadathes:oai:collectionscanada.gc.ca:OWTU.10012/7591 2023-05-15T14:55:01+02:00 Improving estimates of net ecosystem CO2 exchange between the Arctic land surface and the atmosphere Luus, Kristina 2013-05-24T19:08:18Z http://hdl.handle.net/10012/7591 en eng http://hdl.handle.net/10012/7591 Arctic CO2 Carbon balance Model Remote sensing Net ecosystem exchange Snow Biogeoscience Thesis or Dissertation 2013 ftcanadathes 2014-06-21T23:46:48Z Feedbacks between the climate system and the high-latitude carbon cycle will substantially influence the intensity of future climate change. It is therefore crucial that the net ecosystem exchange of CO2 (NEE) between the high-latitude land surface and the atmosphere is accurately quantified, where NEE refers to the difference between ecosystem respiration (R) and photosynthesis (gross ecosystem exchange, GEE): NEE=-GEE+R in umol/m^2/s. NEE can only be directly measured over areas of 1 km^2 through eddy covariance, and modeling approaches such as the Vegetation Photosynthesis Respiration Model (VPRM) are required to upscale NEE. VPRM is a remote sensing based model that calculates R as a linear function of air temperature (Ta) when air temperature is above a given threshold (Tlow), and sets respiration to a constant value when Ta 50%, and as a linear function of air temperature when SCA<50%, thereby reflecting the influence of snow on decoupling soil/air temperatures. Representing the effect of SCA on NEE therefore reduced uncertainty in VPRM estimates of NEE. In order to represent spatial variability in high-latitude estimates of NEE due to vegetation type, Arctic-specific vegetation classes were created for PolarVPRM by combining and aggregating two existing vegetation classifications: the Synergetic Land Cover Product and the Circumpolar Arctic Vegetation Map. Levene's test indicated that the PolarVPRM vegetation classes divided the pan-Arctic region into heterogeneous distributions in terms of net primary productivity, and passive microwave derived estimates of snow and growing season influences on NEE. A non-parametric statistical approach of Alternating Conditional Expectations found significant, non-linear associations to exist between passive microwave derived estimates of snow and growing season drivers of NEE. Furthermore, the shape of these associations varied according to the vegetation class over which they were examined. Further support was therefore provided to the idea that uncertainty in model estimates of NEE could be reduced by calculating snow and growing season NEE separately within each vegetation class. PolarVPRM estimates of NEE in 2001-2012 were generated at a three hourly and 1/6 x 1/4 degree resolution across polar North America (55-170 W, 55-83 N). Model calibration was conducted over three sites: Daring Lake, Ivotuk, and Atqasuk, Alaska, USA. Model validation was then conducted by comparing PolarVPRM estimates of year-round daily average NEE to non-gap-filled eddy covariance observations of daily average NEE acquired over the three calibration sites, as well as six other Arctic sites. PolarVPRM performed well over all sites, with an average mean absolute error (MAE) of 0.20 umol/m^2/s, and had diminished error rates when the influence of SCA on respiration was explicitly represented. Error analysis indicated that peak growing season GEE was underestimated at Barrow because GEE at this site showed a stronger response to the amount of incoming shortwave radiation than at the calibration site, suggesting that PolarVPRM may underestimate GEE over wetland and barren vegetated regions. Despite these uncertainties, PolarVPRM was found to generate more accurate estimates of monthly and three-hourly NEE relative to eddy covariance observations than two established models, FLUXNET Model-Tree Ensemble (MTE) and CarbonTracker. Relative to eddy covariance observations and PolarVPRM estimates, MTE tended to overestimate snow season respiration, and CarbonTracker tended to overestimate the amount of midday photosynthesis. Analysis of PolarVPRM output across North America (north of 55 N) found an increase in net annual carbon efflux over over time (2001-2012). Specifically, increased rates of respiration are estimated when soil and air temperatures are warmer. Although increases in growing season vegetation indices and air temperature enable greater photosynthetic uptake by Arctic vegetation, forests and shrublands uptake less CO2 in the middle of the growing season when air temperatures rise above the physiological optima for photosynthesis. As a result, PolarVPRM estimated a decline in net photosynthetic uptake over time. Overall, PolarVPRM output indicates that North American regions north of 55 N are losing strength as a carbon sink in response to rising air temperatures. Thesis Arctic Barrow Climate change Alaska Theses Canada/Thèses Canada (Library and Archives Canada) Arctic Daring Lake ENVELOPE(-111.635,-111.635,64.834,64.834)