A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic

The grazing optimization hypothesis predicts that net primary production (NPP) and nitrogen levels within vegetation will be highest with moderate grazing levels. In the Canadian High Arctic, muskoxen are one of two major herbivores; they prefer to graze in wet sedge meadow plant communities. To tes...

Full description

Bibliographic Details
Main Author: Elliott, Tammy Lynn
Format: Thesis
Language:English
Published: University of British Columbia 2009
Subjects:
Online Access:http://hdl.handle.net/2429/8450
id ftcanadathes:oai:collectionscanada.gc.ca:BVAU.2429/8450
record_format openpolar
spelling ftcanadathes:oai:collectionscanada.gc.ca:BVAU.2429/8450 2023-05-15T14:54:18+02:00 A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic Elliott, Tammy Lynn 2009-05-29T15:19:47Z http://hdl.handle.net/2429/8450 eng eng University of British Columbia http://hdl.handle.net/2429/8450 Electronic Thesis or Dissertation 2009 ftcanadathes 2014-03-30T00:45:17Z The grazing optimization hypothesis predicts that net primary production (NPP) and nitrogen levels within vegetation will be highest with moderate grazing levels. In the Canadian High Arctic, muskoxen are one of two major herbivores; they prefer to graze in wet sedge meadow plant communities. To test the grazing optimization hypothesis in these plant communities, two studies were initiated in 2007. The first study spanned two years and compared grazed and ungrazed sedge meadows. The grazed meadows had higher belowground biomass in 2007 and graminoid net primary production was larger in 2008. The ungrazed meadows had greater quantities of dead biomass. Nitrogen concentrations in Carex aquatilis ssp. stans and Eriophorum angustifolium ssp. triste and soil ammonium availability were higher at the grazed site. In the second study, we created two experimental grids with clipping and litter removal treatments. Aboveground net primary production, ecosystem respiration, and shoot carbon concentrations decreased due to clipping. However, shoot nitrogen concentrations increased in C. membranacea and E. triste as clipping frequencies increased. Soil moisture levels also rose with clipping frequencies. Litter removal did not effect aboveground net primary production or soil moisture content. We conclude that the grazing optimization hypothesis applies to High Arctic wet sedge meadows because of the higher aboveground NPP and belowground biomass at the grazed site. However, decreased aboveground NPP in the clipping experiment indicates that muskoxen stimulate primary production in these plant communities by accelerating the nitrogen cycle by the addition of nutrients to the soil from their excrement. Thesis Arctic Carex aquatilis Eriophorum Theses Canada/Thèses Canada (Library and Archives Canada) Arctic
institution Open Polar
collection Theses Canada/Thèses Canada (Library and Archives Canada)
op_collection_id ftcanadathes
language English
description The grazing optimization hypothesis predicts that net primary production (NPP) and nitrogen levels within vegetation will be highest with moderate grazing levels. In the Canadian High Arctic, muskoxen are one of two major herbivores; they prefer to graze in wet sedge meadow plant communities. To test the grazing optimization hypothesis in these plant communities, two studies were initiated in 2007. The first study spanned two years and compared grazed and ungrazed sedge meadows. The grazed meadows had higher belowground biomass in 2007 and graminoid net primary production was larger in 2008. The ungrazed meadows had greater quantities of dead biomass. Nitrogen concentrations in Carex aquatilis ssp. stans and Eriophorum angustifolium ssp. triste and soil ammonium availability were higher at the grazed site. In the second study, we created two experimental grids with clipping and litter removal treatments. Aboveground net primary production, ecosystem respiration, and shoot carbon concentrations decreased due to clipping. However, shoot nitrogen concentrations increased in C. membranacea and E. triste as clipping frequencies increased. Soil moisture levels also rose with clipping frequencies. Litter removal did not effect aboveground net primary production or soil moisture content. We conclude that the grazing optimization hypothesis applies to High Arctic wet sedge meadows because of the higher aboveground NPP and belowground biomass at the grazed site. However, decreased aboveground NPP in the clipping experiment indicates that muskoxen stimulate primary production in these plant communities by accelerating the nitrogen cycle by the addition of nutrients to the soil from their excrement.
format Thesis
author Elliott, Tammy Lynn
spellingShingle Elliott, Tammy Lynn
A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic
author_facet Elliott, Tammy Lynn
author_sort Elliott, Tammy Lynn
title A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic
title_short A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic
title_full A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic
title_fullStr A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic
title_full_unstemmed A comparison of grazed and ungrazed sedge meadows in the Canadian High Arctic
title_sort comparison of grazed and ungrazed sedge meadows in the canadian high arctic
publisher University of British Columbia
publishDate 2009
url http://hdl.handle.net/2429/8450
geographic Arctic
geographic_facet Arctic
genre Arctic
Carex aquatilis
Eriophorum
genre_facet Arctic
Carex aquatilis
Eriophorum
op_relation http://hdl.handle.net/2429/8450
_version_ 1766326013953835008