A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data

We present a measurement of the angular bispectrum of the millimeter-wave sky in observing bands centered at roughly 95, 150, and 220 GHz, on angular scales of 1'≾θ≾10' (multipole number 1000≾l≾10,000). At these frequencies and angular scales, the main contributions to the bispect...

Full description

Bibliographic Details
Published in:The Astrophysical Journal
Main Authors: Crawford, T. M., Lueker, M., Padin, S., Vieira, J. D.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Astronomical Society 2014
Subjects:
Online Access:https://doi.org/10.1088/0004-637X/784/2/143
id ftcaltechauth:oai:authors.library.caltech.edu:nqq63-n6a33
record_format openpolar
spelling ftcaltechauth:oai:authors.library.caltech.edu:nqq63-n6a33 2024-09-15T18:36:45+00:00 A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data Crawford, T. M. Lueker, M. Padin, S. Vieira, J. D. 2014-04-01 https://doi.org/10.1088/0004-637X/784/2/143 unknown American Astronomical Society http://arxiv.org/abs/1303.3535 https://doi.org/10.1088/0004-637X/784/2/143 oai:authors.library.caltech.edu:nqq63-n6a33 eprintid:46126 resolverid:CaltechAUTHORS:20140606-113330005 info:eu-repo/semantics/openAccess Other Astrophysical Journal, 784(2), Art. No. 143, (2014-04-01) cosmic background radiation cosmology: observations methods: data analysis info:eu-repo/semantics/article 2014 ftcaltechauth https://doi.org/10.1088/0004-637X/784/2/143 2024-08-06T15:35:03Z We present a measurement of the angular bispectrum of the millimeter-wave sky in observing bands centered at roughly 95, 150, and 220 GHz, on angular scales of 1'≾θ≾10' (multipole number 1000≾l≾10,000). At these frequencies and angular scales, the main contributions to the bispectrum are expected to be the thermal Sunyaev-Zel'dovich (tSZ) effect and emission from extragalactic sources, predominantly dusty, star-forming galaxies (DSFGs) and active galactic nuclei. We measure the bispectrum in 800 deg^2 of three-band South Pole Telescope data, and we use a multi-frequency fitting procedure to separate the bispectrum of the tSZ effect from the extragalactic source contribution. We simultaneously detect the bispectrum of the tSZ effect at >10σ, the unclustered component of the extragalactic source bispectrum at >5σ in each frequency band, and the bispectrum due to the clustering of DSFGs—i.e., the clustered cosmic infrared background (CIB) bispectrum—at >5σ. This is the first reported detection of the clustered CIB bispectrum. We use the measured tSZ bispectrum amplitude, compared to model predictions, to constrain the normalization of the matter power spectrum to be σ_8 = 0.787 ± 0.031 and to predict the amplitude of the tSZ power spectrum at l = 3000. This prediction improves our ability to separate the thermal and kinematic contributions to the total SZ power spectrum. The addition of bispectrum data improves our constraint on the tSZ power spectrum amplitude by a factor of two compared to power spectrum measurements alone and demonstrates a preference for a nonzero kinematic SZ (kSZ) power spectrum, with a derived constraint on the kSZ amplitude at l = 3000 of A_(kSZ) = 2.9 ± 1.6 μK^2, or A_(kSZ) = 2.6 ± 1.8 μK^2 if the default A_(kSZ) > 0 prior is removed. © 2014 American Astronomical Society. Received 2013 March 13; accepted 2014 February 24; published 2014 March 14. We thank Blake Sherwin for providing the ACT l-space filter function, and we thank an anonymous referee for ... Article in Journal/Newspaper South pole Caltech Authors (California Institute of Technology) The Astrophysical Journal 784 2 143
institution Open Polar
collection Caltech Authors (California Institute of Technology)
op_collection_id ftcaltechauth
language unknown
topic cosmic background radiation
cosmology: observations
methods: data analysis
spellingShingle cosmic background radiation
cosmology: observations
methods: data analysis
Crawford, T. M.
Lueker, M.
Padin, S.
Vieira, J. D.
A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data
topic_facet cosmic background radiation
cosmology: observations
methods: data analysis
description We present a measurement of the angular bispectrum of the millimeter-wave sky in observing bands centered at roughly 95, 150, and 220 GHz, on angular scales of 1'≾θ≾10' (multipole number 1000≾l≾10,000). At these frequencies and angular scales, the main contributions to the bispectrum are expected to be the thermal Sunyaev-Zel'dovich (tSZ) effect and emission from extragalactic sources, predominantly dusty, star-forming galaxies (DSFGs) and active galactic nuclei. We measure the bispectrum in 800 deg^2 of three-band South Pole Telescope data, and we use a multi-frequency fitting procedure to separate the bispectrum of the tSZ effect from the extragalactic source contribution. We simultaneously detect the bispectrum of the tSZ effect at >10σ, the unclustered component of the extragalactic source bispectrum at >5σ in each frequency band, and the bispectrum due to the clustering of DSFGs—i.e., the clustered cosmic infrared background (CIB) bispectrum—at >5σ. This is the first reported detection of the clustered CIB bispectrum. We use the measured tSZ bispectrum amplitude, compared to model predictions, to constrain the normalization of the matter power spectrum to be σ_8 = 0.787 ± 0.031 and to predict the amplitude of the tSZ power spectrum at l = 3000. This prediction improves our ability to separate the thermal and kinematic contributions to the total SZ power spectrum. The addition of bispectrum data improves our constraint on the tSZ power spectrum amplitude by a factor of two compared to power spectrum measurements alone and demonstrates a preference for a nonzero kinematic SZ (kSZ) power spectrum, with a derived constraint on the kSZ amplitude at l = 3000 of A_(kSZ) = 2.9 ± 1.6 μK^2, or A_(kSZ) = 2.6 ± 1.8 μK^2 if the default A_(kSZ) > 0 prior is removed. © 2014 American Astronomical Society. Received 2013 March 13; accepted 2014 February 24; published 2014 March 14. We thank Blake Sherwin for providing the ACT l-space filter function, and we thank an anonymous referee for ...
format Article in Journal/Newspaper
author Crawford, T. M.
Lueker, M.
Padin, S.
Vieira, J. D.
author_facet Crawford, T. M.
Lueker, M.
Padin, S.
Vieira, J. D.
author_sort Crawford, T. M.
title A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data
title_short A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data
title_full A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data
title_fullStr A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data
title_full_unstemmed A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg^2 of South Pole Telescope Data
title_sort measurement of the secondary-cmb and millimeter-wave-foreground bispectrum using 800 deg^2 of south pole telescope data
publisher American Astronomical Society
publishDate 2014
url https://doi.org/10.1088/0004-637X/784/2/143
genre South pole
genre_facet South pole
op_source Astrophysical Journal, 784(2), Art. No. 143, (2014-04-01)
op_relation http://arxiv.org/abs/1303.3535
https://doi.org/10.1088/0004-637X/784/2/143
oai:authors.library.caltech.edu:nqq63-n6a33
eprintid:46126
resolverid:CaltechAUTHORS:20140606-113330005
op_rights info:eu-repo/semantics/openAccess
Other
op_doi https://doi.org/10.1088/0004-637X/784/2/143
container_title The Astrophysical Journal
container_volume 784
container_issue 2
container_start_page 143
_version_ 1810480465380900864