BICEP3 performance overview and planned Keck Array upgrade
Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The inc...
Published in: | SPIE Proceedings, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII |
---|---|
Main Authors: | , , , , , , , , , , |
Other Authors: | , |
Format: | Book Part |
Language: | unknown |
Published: |
Society of Photo-Optical Instrumentation Engineers (SPIE)
2016
|
Subjects: | |
Online Access: | https://doi.org/10.1117/12.2233894 |
id |
ftcaltechauth:oai:authors.library.caltech.edu:ja6t7-j4p65 |
---|---|
record_format |
openpolar |
spelling |
ftcaltechauth:oai:authors.library.caltech.edu:ja6t7-j4p65 2024-10-20T14:11:44+00:00 BICEP3 performance overview and planned Keck Array upgrade Grayson, J. A. Bock, J. J. Filippini, J. P. Hristov, V. V. Hui, H. Kefeli, S. Lueker, M. O'Brient, R. Staniszewski, Z. K. Steinbach, B. Teply, G. P. Holland, Wayne S. Zmuidzinas, Jonas 2016-07-19 https://doi.org/10.1117/12.2233894 unknown Society of Photo-Optical Instrumentation Engineers (SPIE) https://arxiv.org/abs/1607.04668 https://doi.org/10.1117/12.2233894 eprintid:72004 info:eu-repo/semantics/openAccess Other Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, Scotland, 28 June-1 July 2016 Cosmic Microwave Background Inflation Gravitational Waves Polarization BICEP Keck Array info:eu-repo/semantics/bookPart 2016 ftcaltechauth https://doi.org/10.1117/12.2233894 2024-09-25T18:46:40Z Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The increased per-receiver optical throughput compared to Bicep2/Keck Array, due to both its faster f=1:7 optics and the larger aperture, more than doubles the combined mapping speed of the Bicep/Keck program. The Bicep3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, Bicep3- class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new "BICEP Array" that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). This work is supported by the National Science Foundation (grant nos. 1313158, 1313010, 1313062, 1313287, 1056465, 0960243), the SLAC Laboratory Directed Research and Development Fund, the Canada Foundation for Innovation, Science and Technology Facilities Council Consolidated Grant (ST/K000926/1), and the British Columbia Development Fund. The development of detector technology was supported by the JPL Research and Technology Development Fund and grants 06-ARPA206-0040, 10-SAT10-0017, and 12-SAT12-0031 from the NASA APRA and SAT programs. The development and testing of detector modules was supported by the Gordon and Betty Moore Foundation. Published - 99140S.pdf Submitted - 1607.04668v1.pdf Book Part South pole Caltech Authors (California Institute of Technology) British Columbia ENVELOPE(-125.003,-125.003,54.000,54.000) Canada South Pole SPIE Proceedings, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII 9914 99140S |
institution |
Open Polar |
collection |
Caltech Authors (California Institute of Technology) |
op_collection_id |
ftcaltechauth |
language |
unknown |
topic |
Cosmic Microwave Background Inflation Gravitational Waves Polarization BICEP Keck Array |
spellingShingle |
Cosmic Microwave Background Inflation Gravitational Waves Polarization BICEP Keck Array Grayson, J. A. Bock, J. J. Filippini, J. P. Hristov, V. V. Hui, H. Kefeli, S. Lueker, M. O'Brient, R. Staniszewski, Z. K. Steinbach, B. Teply, G. P. BICEP3 performance overview and planned Keck Array upgrade |
topic_facet |
Cosmic Microwave Background Inflation Gravitational Waves Polarization BICEP Keck Array |
description |
Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The increased per-receiver optical throughput compared to Bicep2/Keck Array, due to both its faster f=1:7 optics and the larger aperture, more than doubles the combined mapping speed of the Bicep/Keck program. The Bicep3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, Bicep3- class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new "BICEP Array" that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). This work is supported by the National Science Foundation (grant nos. 1313158, 1313010, 1313062, 1313287, 1056465, 0960243), the SLAC Laboratory Directed Research and Development Fund, the Canada Foundation for Innovation, Science and Technology Facilities Council Consolidated Grant (ST/K000926/1), and the British Columbia Development Fund. The development of detector technology was supported by the JPL Research and Technology Development Fund and grants 06-ARPA206-0040, 10-SAT10-0017, and 12-SAT12-0031 from the NASA APRA and SAT programs. The development and testing of detector modules was supported by the Gordon and Betty Moore Foundation. Published - 99140S.pdf Submitted - 1607.04668v1.pdf |
author2 |
Holland, Wayne S. Zmuidzinas, Jonas |
format |
Book Part |
author |
Grayson, J. A. Bock, J. J. Filippini, J. P. Hristov, V. V. Hui, H. Kefeli, S. Lueker, M. O'Brient, R. Staniszewski, Z. K. Steinbach, B. Teply, G. P. |
author_facet |
Grayson, J. A. Bock, J. J. Filippini, J. P. Hristov, V. V. Hui, H. Kefeli, S. Lueker, M. O'Brient, R. Staniszewski, Z. K. Steinbach, B. Teply, G. P. |
author_sort |
Grayson, J. A. |
title |
BICEP3 performance overview and planned Keck Array upgrade |
title_short |
BICEP3 performance overview and planned Keck Array upgrade |
title_full |
BICEP3 performance overview and planned Keck Array upgrade |
title_fullStr |
BICEP3 performance overview and planned Keck Array upgrade |
title_full_unstemmed |
BICEP3 performance overview and planned Keck Array upgrade |
title_sort |
bicep3 performance overview and planned keck array upgrade |
publisher |
Society of Photo-Optical Instrumentation Engineers (SPIE) |
publishDate |
2016 |
url |
https://doi.org/10.1117/12.2233894 |
long_lat |
ENVELOPE(-125.003,-125.003,54.000,54.000) |
geographic |
British Columbia Canada South Pole |
geographic_facet |
British Columbia Canada South Pole |
genre |
South pole |
genre_facet |
South pole |
op_source |
Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, Scotland, 28 June-1 July 2016 |
op_relation |
https://arxiv.org/abs/1607.04668 https://doi.org/10.1117/12.2233894 eprintid:72004 |
op_rights |
info:eu-repo/semantics/openAccess Other |
op_doi |
https://doi.org/10.1117/12.2233894 |
container_title |
SPIE Proceedings, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII |
container_volume |
9914 |
container_start_page |
99140S |
_version_ |
1813452390369591296 |