Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models
We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, âˆ...
Published in: | Atmospheric Chemistry and Physics |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
European Geosciences Union
2015
|
Subjects: | |
Online Access: | https://doi.org/10.5194/acp-15-2227-2015 |
id |
ftcaltechauth:oai:authors.library.caltech.edu:gjqpj-xkc81 |
---|---|
record_format |
openpolar |
spelling |
ftcaltechauth:oai:authors.library.caltech.edu:gjqpj-xkc81 2024-10-20T14:06:31+00:00 Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models Viatte, C. Strong, K. Hannigan, J. Nussbaumer, E. Emmons, L. K. Conway, S. Paton-Walsh, C. Hartley, J. Benmergui, J. Lin, J. 2015-03-02 https://doi.org/10.5194/acp-15-2227-2015 unknown European Geosciences Union eprintid:56612 info:eu-repo/semantics/openAccess Other Atmospheric Chemistry and Physics, 15(5), 2227-2246, (2015-03-02) info:eu-repo/semantics/article 2015 ftcaltechauth https://doi.org/10.5194/acp-15-2227-2015 2024-09-25T18:46:37Z We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, −68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C_2H_6), acetylene (C_2H_2), formic acid (HCOOH), and formaldehyde (H_2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C_2H_6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg^(−1) for HCN, 1.24 ± 0.71 g kg^(−1) for C_2H_6, 0.34 ± 0.21 g kg^(−1) for C_2H_2, and 2.92 ± 1.30 g kg^(−1) for HCOOH. The emission factor for CH_3OH estimated at Eureka is 3.44 ± 1.68 g kg^(−1). To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their ... Article in Journal/Newspaper Arctic Arctic pollution Eureka Greenland Nunavut Thule Caltech Authors (California Institute of Technology) Arctic Canada Eureka ENVELOPE(-85.940,-85.940,79.990,79.990) Greenland Nunavut Atmospheric Chemistry and Physics 15 5 2227 2246 |
institution |
Open Polar |
collection |
Caltech Authors (California Institute of Technology) |
op_collection_id |
ftcaltechauth |
language |
unknown |
description |
We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, −68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C_2H_6), acetylene (C_2H_2), formic acid (HCOOH), and formaldehyde (H_2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C_2H_6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg^(−1) for HCN, 1.24 ± 0.71 g kg^(−1) for C_2H_6, 0.34 ± 0.21 g kg^(−1) for C_2H_2, and 2.92 ± 1.30 g kg^(−1) for HCOOH. The emission factor for CH_3OH estimated at Eureka is 3.44 ± 1.68 g kg^(−1). To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their ... |
format |
Article in Journal/Newspaper |
author |
Viatte, C. Strong, K. Hannigan, J. Nussbaumer, E. Emmons, L. K. Conway, S. Paton-Walsh, C. Hartley, J. Benmergui, J. Lin, J. |
spellingShingle |
Viatte, C. Strong, K. Hannigan, J. Nussbaumer, E. Emmons, L. K. Conway, S. Paton-Walsh, C. Hartley, J. Benmergui, J. Lin, J. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models |
author_facet |
Viatte, C. Strong, K. Hannigan, J. Nussbaumer, E. Emmons, L. K. Conway, S. Paton-Walsh, C. Hartley, J. Benmergui, J. Lin, J. |
author_sort |
Viatte, C. |
title |
Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models |
title_short |
Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models |
title_full |
Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models |
title_fullStr |
Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models |
title_full_unstemmed |
Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models |
title_sort |
identifying fire plumes in the arctic with tropospheric ftir measurements and transport models |
publisher |
European Geosciences Union |
publishDate |
2015 |
url |
https://doi.org/10.5194/acp-15-2227-2015 |
long_lat |
ENVELOPE(-85.940,-85.940,79.990,79.990) |
geographic |
Arctic Canada Eureka Greenland Nunavut |
geographic_facet |
Arctic Canada Eureka Greenland Nunavut |
genre |
Arctic Arctic pollution Eureka Greenland Nunavut Thule |
genre_facet |
Arctic Arctic pollution Eureka Greenland Nunavut Thule |
op_source |
Atmospheric Chemistry and Physics, 15(5), 2227-2246, (2015-03-02) |
op_relation |
eprintid:56612 |
op_rights |
info:eu-repo/semantics/openAccess Other |
op_doi |
https://doi.org/10.5194/acp-15-2227-2015 |
container_title |
Atmospheric Chemistry and Physics |
container_volume |
15 |
container_issue |
5 |
container_start_page |
2227 |
op_container_end_page |
2246 |
_version_ |
1813445177485819904 |