The source counts of submillimetre galaxies detected at λ= 1.1 mm

The source counts of galaxies discovered at submillimetre and millimetre wavelengths provide important information on the evolution of infrared-bright galaxies. We combine the data from six blank-field surveys carried out at 1.1 mm with AzTEC, totalling 1.6 deg^2 in area with root-mean-square depths...

Full description

Bibliographic Details
Published in:Monthly Notices of the Royal Astronomical Society
Main Authors: Scott, K. S., Wilson, G. W., Aretxaga, I., Austermann, J. E., Chapin, E. L., Dunlop, J. S., Ezawa, H., Halpern, M., Hatsukade, B., Hughes, D. H., Kawabe, R., Kim, S., Kohno, K., Lowenthal, J. D., Montaña, A., Nakanishi, K., Oshima, T., Sanders, D., Scott, D., Scoville, N., Tamura, Y., Welch, D., Yun, M. S., Zeballos, M.
Format: Article in Journal/Newspaper
Language:unknown
Published: Royal Astronomical Society 2012
Subjects:
Online Access:https://doi.org/10.1111/j.1365-2966.2012.20905.x
Description
Summary:The source counts of galaxies discovered at submillimetre and millimetre wavelengths provide important information on the evolution of infrared-bright galaxies. We combine the data from six blank-field surveys carried out at 1.1 mm with AzTEC, totalling 1.6 deg^2 in area with root-mean-square depths ranging from 0.4 to 1.7 mJy, and derive the strongest constraints to date on the 1.1 mm source counts at flux densities S_1100= 1–12 mJy. Using additional data from the AzTEC Cluster Environment Survey to extend the counts to S1100∼ 20 mJy, we see tentative evidence for an enhancement relative to the exponential drop in the counts at S_1100∼ 13 mJy and a smooth connection to the bright source counts at >20 mJy measured by the South Pole Telescope; this excess may be due to strong-lensing effects. We compare these counts to predictions from several semi-analytical and phenomenological models and find that for most the agreement is quite good at flux densities ≳ 4 mJy; however, we find significant discrepancies (≳ 3σ) between the models and the observed 1.1-mm counts at lower flux densities, and none of them is consistent with the observed turnover in the Euclidean-normalized counts at S_1100≲ 2 mJy. Our new results therefore may require modifications to existing evolutionary models for low-luminosity galaxies. Alternatively, the discrepancy between the measured counts at the faint end and predictions from phenomenological models could arise from limited knowledge of the spectral energy distributions of faint galaxies in the local Universe. © 2012 The Authors. Monthly Notices of the Royal Astronomical Society © 2012 RAS. Accepted 2012 March 10. Received 2012 February 15; in original form 2011 November 28. Article first published online: 17 Apr. 2012. We thank Chris Pearson and Alberto Franceschini for providing us with predictions of the 1.1 mm source counts from their galaxy evolution models. KSS is supported by the National Radio Astronomy Observatory, which is a facility of the National Science ...