A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw
The last glacial period is punctuated by abrupt changes in Northern Hemisphere temperatures that are known as Dansgaard–Oeschger (DO) events. A striking and largely unexplained feature of DO events is an interhemispheric asymmetry characterized by cooling in Antarctica during periods of warming in G...
Published in: | Journal of Climate |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Meteorological Society
2019
|
Subjects: | |
Online Access: | https://authors.library.caltech.edu/97049/ https://authors.library.caltech.edu/97049/1/jcli-d-18-0621.1.pdf https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362 |
id |
ftcaltechauth:oai:authors.library.caltech.edu:97049 |
---|---|
record_format |
openpolar |
spelling |
ftcaltechauth:oai:authors.library.caltech.edu:97049 2023-05-15T13:38:16+02:00 A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw Thompson, Andrew F. Hines, Sophia K. Adkins, Jess F. 2019-07 application/pdf https://authors.library.caltech.edu/97049/ https://authors.library.caltech.edu/97049/1/jcli-d-18-0621.1.pdf https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362 en eng American Meteorological Society https://authors.library.caltech.edu/97049/1/jcli-d-18-0621.1.pdf Thompson, Andrew F. and Hines, Sophia K. and Adkins, Jess F. (2019) A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw. Journal of Climate, 32 (14). pp. 4347-4365. ISSN 0894-8755. doi:10.1175/JCLI-D-18-0621.1. https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362 <https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362> other Article PeerReviewed 2019 ftcaltechauth https://doi.org/10.1175/JCLI-D-18-0621.1 2021-11-18T18:51:36Z The last glacial period is punctuated by abrupt changes in Northern Hemisphere temperatures that are known as Dansgaard–Oeschger (DO) events. A striking and largely unexplained feature of DO events is an interhemispheric asymmetry characterized by cooling in Antarctica during periods of warming in Greenland and vice versa—the bipolar seesaw. Methane-synchronized ice core records indicate that the Southern Hemisphere lags the Northern Hemisphere by approximately 200 years. Here, we propose a mechanism that produces observed features of both the bipolar seesaw and the phasing of DO events. The spatial pattern of sea ice formation and melt in the Southern Ocean imposes a rigid constraint on where water masses are modified: waters are made denser near the coast where ice forms and waters are made lighter farther north where ice melts. This pattern, coupled to the tilt of density surfaces across the Southern Ocean and the stratification of the ocean basins, produces two modes of overturning corresponding to different bipolar seesaw states. We present evolution equations for a simplified ocean model that describes the transient adjustment of the basin stratification, the Southern Ocean surface density distribution, and the overturning strength as the ocean moves between these states in response to perturbations in North Atlantic Deep Water formation, which we take as a proxy for Greenland temperatures. Transitions between different overturning states occur over a multicentennial time scale, which is qualitatively consistent with the observed Southern Hemisphere lag. The volume of deep density layers varies inversely with the overturning strength, leading to significant changes in residence times. Evidence of these dynamics in more realistic circulation models is discussed. Article in Journal/Newspaper Antarc* Antarctica Greenland ice core North Atlantic Deep Water North Atlantic Sea ice Southern Ocean Caltech Authors (California Institute of Technology) Greenland Southern Ocean Journal of Climate 32 14 4347 4365 |
institution |
Open Polar |
collection |
Caltech Authors (California Institute of Technology) |
op_collection_id |
ftcaltechauth |
language |
English |
description |
The last glacial period is punctuated by abrupt changes in Northern Hemisphere temperatures that are known as Dansgaard–Oeschger (DO) events. A striking and largely unexplained feature of DO events is an interhemispheric asymmetry characterized by cooling in Antarctica during periods of warming in Greenland and vice versa—the bipolar seesaw. Methane-synchronized ice core records indicate that the Southern Hemisphere lags the Northern Hemisphere by approximately 200 years. Here, we propose a mechanism that produces observed features of both the bipolar seesaw and the phasing of DO events. The spatial pattern of sea ice formation and melt in the Southern Ocean imposes a rigid constraint on where water masses are modified: waters are made denser near the coast where ice forms and waters are made lighter farther north where ice melts. This pattern, coupled to the tilt of density surfaces across the Southern Ocean and the stratification of the ocean basins, produces two modes of overturning corresponding to different bipolar seesaw states. We present evolution equations for a simplified ocean model that describes the transient adjustment of the basin stratification, the Southern Ocean surface density distribution, and the overturning strength as the ocean moves between these states in response to perturbations in North Atlantic Deep Water formation, which we take as a proxy for Greenland temperatures. Transitions between different overturning states occur over a multicentennial time scale, which is qualitatively consistent with the observed Southern Hemisphere lag. The volume of deep density layers varies inversely with the overturning strength, leading to significant changes in residence times. Evidence of these dynamics in more realistic circulation models is discussed. |
format |
Article in Journal/Newspaper |
author |
Thompson, Andrew F. Hines, Sophia K. Adkins, Jess F. |
spellingShingle |
Thompson, Andrew F. Hines, Sophia K. Adkins, Jess F. A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw |
author_facet |
Thompson, Andrew F. Hines, Sophia K. Adkins, Jess F. |
author_sort |
Thompson, Andrew F. |
title |
A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw |
title_short |
A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw |
title_full |
A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw |
title_fullStr |
A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw |
title_full_unstemmed |
A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw |
title_sort |
southern ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw |
publisher |
American Meteorological Society |
publishDate |
2019 |
url |
https://authors.library.caltech.edu/97049/ https://authors.library.caltech.edu/97049/1/jcli-d-18-0621.1.pdf https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362 |
geographic |
Greenland Southern Ocean |
geographic_facet |
Greenland Southern Ocean |
genre |
Antarc* Antarctica Greenland ice core North Atlantic Deep Water North Atlantic Sea ice Southern Ocean |
genre_facet |
Antarc* Antarctica Greenland ice core North Atlantic Deep Water North Atlantic Sea ice Southern Ocean |
op_relation |
https://authors.library.caltech.edu/97049/1/jcli-d-18-0621.1.pdf Thompson, Andrew F. and Hines, Sophia K. and Adkins, Jess F. (2019) A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw. Journal of Climate, 32 (14). pp. 4347-4365. ISSN 0894-8755. doi:10.1175/JCLI-D-18-0621.1. https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362 <https://resolver.caltech.edu/CaltechAUTHORS:20190711-083803362> |
op_rights |
other |
op_doi |
https://doi.org/10.1175/JCLI-D-18-0621.1 |
container_title |
Journal of Climate |
container_volume |
32 |
container_issue |
14 |
container_start_page |
4347 |
op_container_end_page |
4365 |
_version_ |
1766103269239685120 |