Design and pre-flight performance of SPIDER 280 GHz receivers

In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales....

Full description

Bibliographic Details
Published in:Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X
Main Authors: Shaw, E. C., Ade, P.A.R., Akers, S., Amiri, M., Austermann, Jason E., Beall, James A., Becker, D.T., Benton, S.J., Bergman, A. S., Bock, J. J., Bond, J.R., Bryan, S.A., Chiang, H.C., Contaldi, C.R., Domagalski, R.S., Doré, O., Duff, S. M., Duivenvoorden, A.J., Eriksen, H.K., Farhang, M., Filippini, J. P., Fissel, L.M., Fraisse, A.A., Freese, K., Galloway, M., Gambrel, A. E., Gandilo, N.N., Ganga, K., Grigorian, A., Gualtieri, R, Gudmundsson, J.E., Halpern, M., Hartley, J., Hasselfield, M., Hilton, G., Holmes, W., Hristov, V. V., Huang, Z., Hubmayr, Johannes, Irwin, K.D., Jones, W.C., Kahn, A., Kuo, C.L., Kermish, Z.D., Lennox, A., Leung, J. S.-Y., Megerian, K., Reintsema, C., Li, S., Mason, P. V., Runyan, M. C., Moncelsi, L., Morford, T. A., Nagy, J.M., Nie, R., Mocanu, L. M., Padilla, I.L., Netterfield, C. B., Osherson, B., Rahlin, A.S., Redmond, S., Turner, A. D., Romualdez, L.J., Nolta, M., Ruhl, J.E., Shariff, J.A., Shiu, C., Soler, J.D., Song, X., Trangsrud, A., Thommesen, H., Tucker, C, Tucker, R. S., Ullom, Joel, van der List, J.F., Van Lanen, Jeff, Vissers, M. R., Weber, A. C., Wen, S., Wehus, I.K., Wiebe, D.V., Young, E.Y.
Other Authors: Zmuidzinas, Jonas, Gao, Jian-Rong
Format: Book Part
Language:unknown
Published: Society of Photo-Optical Instrumentation Engineers (SPIE) 2020
Subjects:
Online Access:https://doi.org/10.1117/12.2562941
id ftcaltechauth:oai:authors.library.caltech.edu:856wf-qye60
record_format openpolar
spelling ftcaltechauth:oai:authors.library.caltech.edu:856wf-qye60 2024-10-06T13:43:44+00:00 Design and pre-flight performance of SPIDER 280 GHz receivers Shaw, E. C. Ade, P.A.R. Akers, S. Amiri, M. Austermann, Jason E. Beall, James A. Becker, D.T. Benton, S.J. Bergman, A. S. Bock, J. J. Bond, J.R. Bryan, S.A. Chiang, H.C. Contaldi, C.R. Domagalski, R.S. Doré, O. Duff, S. M. Duivenvoorden, A.J. Eriksen, H.K. Farhang, M. Filippini, J. P. Fissel, L.M. Fraisse, A.A. Freese, K. Galloway, M. Gambrel, A. E. Gandilo, N.N. Ganga, K. Grigorian, A. Gualtieri, R Gudmundsson, J.E. Halpern, M. Hartley, J. Hasselfield, M. Hilton, G. Holmes, W. Hristov, V. V. Huang, Z. Hubmayr, Johannes Irwin, K.D. Jones, W.C. Kahn, A. Kuo, C.L. Kermish, Z.D. Lennox, A. Leung, J. S.-Y. Megerian, K. Reintsema, C. Li, S. Mason, P. V. Runyan, M. C. Moncelsi, L. Morford, T. A. Nagy, J.M. Nie, R. Mocanu, L. M. Padilla, I.L. Netterfield, C. B. Osherson, B. Rahlin, A.S. Redmond, S. Turner, A. D. Romualdez, L.J. Nolta, M. Ruhl, J.E. Shariff, J.A. Shiu, C. Soler, J.D. Song, X. Trangsrud, A. Thommesen, H. Tucker, C Tucker, R. S. Ullom, Joel van der List, J.F. Van Lanen, Jeff Vissers, M. R. Weber, A. C. Wen, S. Wehus, I.K. Wiebe, D.V. Young, E.Y. Zmuidzinas, Jonas Gao, Jian-Rong 2020-12-13 https://doi.org/10.1117/12.2562941 unknown Society of Photo-Optical Instrumentation Engineers (SPIE) https://arxiv.org/abs/2012.12407 https://doi.org/10.1117/12.2562941 eprintid:107392 info:eu-repo/semantics/openAccess Other SPIE Astronomical Telescopes + Instrumentation, Online, 14-18 December 2020 Spider cosmic microwave background polarization transition-edge sensor scientific instrumentation millimeter wave instrumentation cosmology scientific ballooning info:eu-repo/semantics/bookPart 2020 ftcaltechauth https://doi.org/10.1117/12.2562941 2024-09-25T18:46:36Z In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for the second Antarctic flight will incorporate three new 280 GHz receivers alongside three refurbished 95- and 150 GHz receivers from Spider's first flight. In this work we discuss the design and characterization of these new receivers, which employ over 1500 feedhorn-coupled transition-edge sensors. We describe pre-flight laboratory measurements of detector properties, and the optical performance of completed receivers. These receivers will map a wide area of the sky at 280 GHz, providing new information on polarized Galactic dust emission that will help to separate it from the cosmological signal. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). Spider is supported in the U.S. by the National Aeronautics and Space Administration under grants NNX07AL64G, NNX12AE95G, and NNX17AC55G issued through the Science Mission Directorate and by the National Science Foundation through PLR-1043515. Logistical support for the Antarctic deployment and operations was provided by the NSF through the U.S. Antarctic Program. Support in Canada is provided by the Natural Sciences and Engineering Research Council and the Canadian Space Agency. Support in Norway is provided by the Research Council of Norway. Support in Sweden is provided by the Swedish Research Council through the Oskar Klein Centre (Contract No. 638-2013-8993). The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. K.F. is Jeff & Gail Kodosky Endowed Chair in Physics at the University of Texas at Austin and is grateful for support. K.F. acknowledges support by the Swedish Research Council ... Book Part Antarc* Antarctic Caltech Authors (California Institute of Technology) Antarctic The Antarctic Austin Canada Norway Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 173
institution Open Polar
collection Caltech Authors (California Institute of Technology)
op_collection_id ftcaltechauth
language unknown
topic Spider
cosmic microwave background
polarization
transition-edge sensor
scientific instrumentation
millimeter wave instrumentation
cosmology
scientific ballooning
spellingShingle Spider
cosmic microwave background
polarization
transition-edge sensor
scientific instrumentation
millimeter wave instrumentation
cosmology
scientific ballooning
Shaw, E. C.
Ade, P.A.R.
Akers, S.
Amiri, M.
Austermann, Jason E.
Beall, James A.
Becker, D.T.
Benton, S.J.
Bergman, A. S.
Bock, J. J.
Bond, J.R.
Bryan, S.A.
Chiang, H.C.
Contaldi, C.R.
Domagalski, R.S.
Doré, O.
Duff, S. M.
Duivenvoorden, A.J.
Eriksen, H.K.
Farhang, M.
Filippini, J. P.
Fissel, L.M.
Fraisse, A.A.
Freese, K.
Galloway, M.
Gambrel, A. E.
Gandilo, N.N.
Ganga, K.
Grigorian, A.
Gualtieri, R
Gudmundsson, J.E.
Halpern, M.
Hartley, J.
Hasselfield, M.
Hilton, G.
Holmes, W.
Hristov, V. V.
Huang, Z.
Hubmayr, Johannes
Irwin, K.D.
Jones, W.C.
Kahn, A.
Kuo, C.L.
Kermish, Z.D.
Lennox, A.
Leung, J. S.-Y.
Megerian, K.
Reintsema, C.
Li, S.
Mason, P. V.
Runyan, M. C.
Moncelsi, L.
Morford, T. A.
Nagy, J.M.
Nie, R.
Mocanu, L. M.
Padilla, I.L.
Netterfield, C. B.
Osherson, B.
Rahlin, A.S.
Redmond, S.
Turner, A. D.
Romualdez, L.J.
Nolta, M.
Ruhl, J.E.
Shariff, J.A.
Shiu, C.
Soler, J.D.
Song, X.
Trangsrud, A.
Thommesen, H.
Tucker, C
Tucker, R. S.
Ullom, Joel
van der List, J.F.
Van Lanen, Jeff
Vissers, M. R.
Weber, A. C.
Wen, S.
Wehus, I.K.
Wiebe, D.V.
Young, E.Y.
Design and pre-flight performance of SPIDER 280 GHz receivers
topic_facet Spider
cosmic microwave background
polarization
transition-edge sensor
scientific instrumentation
millimeter wave instrumentation
cosmology
scientific ballooning
description In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for the second Antarctic flight will incorporate three new 280 GHz receivers alongside three refurbished 95- and 150 GHz receivers from Spider's first flight. In this work we discuss the design and characterization of these new receivers, which employ over 1500 feedhorn-coupled transition-edge sensors. We describe pre-flight laboratory measurements of detector properties, and the optical performance of completed receivers. These receivers will map a wide area of the sky at 280 GHz, providing new information on polarized Galactic dust emission that will help to separate it from the cosmological signal. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). Spider is supported in the U.S. by the National Aeronautics and Space Administration under grants NNX07AL64G, NNX12AE95G, and NNX17AC55G issued through the Science Mission Directorate and by the National Science Foundation through PLR-1043515. Logistical support for the Antarctic deployment and operations was provided by the NSF through the U.S. Antarctic Program. Support in Canada is provided by the Natural Sciences and Engineering Research Council and the Canadian Space Agency. Support in Norway is provided by the Research Council of Norway. Support in Sweden is provided by the Swedish Research Council through the Oskar Klein Centre (Contract No. 638-2013-8993). The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. K.F. is Jeff & Gail Kodosky Endowed Chair in Physics at the University of Texas at Austin and is grateful for support. K.F. acknowledges support by the Swedish Research Council ...
author2 Zmuidzinas, Jonas
Gao, Jian-Rong
format Book Part
author Shaw, E. C.
Ade, P.A.R.
Akers, S.
Amiri, M.
Austermann, Jason E.
Beall, James A.
Becker, D.T.
Benton, S.J.
Bergman, A. S.
Bock, J. J.
Bond, J.R.
Bryan, S.A.
Chiang, H.C.
Contaldi, C.R.
Domagalski, R.S.
Doré, O.
Duff, S. M.
Duivenvoorden, A.J.
Eriksen, H.K.
Farhang, M.
Filippini, J. P.
Fissel, L.M.
Fraisse, A.A.
Freese, K.
Galloway, M.
Gambrel, A. E.
Gandilo, N.N.
Ganga, K.
Grigorian, A.
Gualtieri, R
Gudmundsson, J.E.
Halpern, M.
Hartley, J.
Hasselfield, M.
Hilton, G.
Holmes, W.
Hristov, V. V.
Huang, Z.
Hubmayr, Johannes
Irwin, K.D.
Jones, W.C.
Kahn, A.
Kuo, C.L.
Kermish, Z.D.
Lennox, A.
Leung, J. S.-Y.
Megerian, K.
Reintsema, C.
Li, S.
Mason, P. V.
Runyan, M. C.
Moncelsi, L.
Morford, T. A.
Nagy, J.M.
Nie, R.
Mocanu, L. M.
Padilla, I.L.
Netterfield, C. B.
Osherson, B.
Rahlin, A.S.
Redmond, S.
Turner, A. D.
Romualdez, L.J.
Nolta, M.
Ruhl, J.E.
Shariff, J.A.
Shiu, C.
Soler, J.D.
Song, X.
Trangsrud, A.
Thommesen, H.
Tucker, C
Tucker, R. S.
Ullom, Joel
van der List, J.F.
Van Lanen, Jeff
Vissers, M. R.
Weber, A. C.
Wen, S.
Wehus, I.K.
Wiebe, D.V.
Young, E.Y.
author_facet Shaw, E. C.
Ade, P.A.R.
Akers, S.
Amiri, M.
Austermann, Jason E.
Beall, James A.
Becker, D.T.
Benton, S.J.
Bergman, A. S.
Bock, J. J.
Bond, J.R.
Bryan, S.A.
Chiang, H.C.
Contaldi, C.R.
Domagalski, R.S.
Doré, O.
Duff, S. M.
Duivenvoorden, A.J.
Eriksen, H.K.
Farhang, M.
Filippini, J. P.
Fissel, L.M.
Fraisse, A.A.
Freese, K.
Galloway, M.
Gambrel, A. E.
Gandilo, N.N.
Ganga, K.
Grigorian, A.
Gualtieri, R
Gudmundsson, J.E.
Halpern, M.
Hartley, J.
Hasselfield, M.
Hilton, G.
Holmes, W.
Hristov, V. V.
Huang, Z.
Hubmayr, Johannes
Irwin, K.D.
Jones, W.C.
Kahn, A.
Kuo, C.L.
Kermish, Z.D.
Lennox, A.
Leung, J. S.-Y.
Megerian, K.
Reintsema, C.
Li, S.
Mason, P. V.
Runyan, M. C.
Moncelsi, L.
Morford, T. A.
Nagy, J.M.
Nie, R.
Mocanu, L. M.
Padilla, I.L.
Netterfield, C. B.
Osherson, B.
Rahlin, A.S.
Redmond, S.
Turner, A. D.
Romualdez, L.J.
Nolta, M.
Ruhl, J.E.
Shariff, J.A.
Shiu, C.
Soler, J.D.
Song, X.
Trangsrud, A.
Thommesen, H.
Tucker, C
Tucker, R. S.
Ullom, Joel
van der List, J.F.
Van Lanen, Jeff
Vissers, M. R.
Weber, A. C.
Wen, S.
Wehus, I.K.
Wiebe, D.V.
Young, E.Y.
author_sort Shaw, E. C.
title Design and pre-flight performance of SPIDER 280 GHz receivers
title_short Design and pre-flight performance of SPIDER 280 GHz receivers
title_full Design and pre-flight performance of SPIDER 280 GHz receivers
title_fullStr Design and pre-flight performance of SPIDER 280 GHz receivers
title_full_unstemmed Design and pre-flight performance of SPIDER 280 GHz receivers
title_sort design and pre-flight performance of spider 280 ghz receivers
publisher Society of Photo-Optical Instrumentation Engineers (SPIE)
publishDate 2020
url https://doi.org/10.1117/12.2562941
geographic Antarctic
The Antarctic
Austin
Canada
Norway
geographic_facet Antarctic
The Antarctic
Austin
Canada
Norway
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source SPIE Astronomical Telescopes + Instrumentation, Online, 14-18 December 2020
op_relation https://arxiv.org/abs/2012.12407
https://doi.org/10.1117/12.2562941
eprintid:107392
op_rights info:eu-repo/semantics/openAccess
Other
op_doi https://doi.org/10.1117/12.2562941
container_title Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X
container_start_page 173
_version_ 1812182257888133120