Gene Expression Responses of Larval Gopher (Sebastes carnatus) and Blue (S. mystinus) Rockfish to Ocean Acidification and Hypoxia

Global climate change is driving shifts in ocean chemistry, which combined with intensification of coastal upwelling, reduces ocean pH and dissolved oxygen (DO) content in the nearshore habitats of the California Current System. Physiological plasticity, within and across generations, might be espec...

Full description

Bibliographic Details
Main Author: Baker, Jacoby
Format: Text
Language:unknown
Published: Digital Commons @ CSUMB 2020
Subjects:
Online Access:https://digitalcommons.csumb.edu/caps_thes_all/981
https://digitalcommons.csumb.edu/context/caps_thes_all/article/2008/viewcontent/BakerJacoby_MLML_Thesis_SIGNED.pdf
Description
Summary:Global climate change is driving shifts in ocean chemistry, which combined with intensification of coastal upwelling, reduces ocean pH and dissolved oxygen (DO) content in the nearshore habitats of the California Current System. Physiological plasticity, within and across generations, might be especially important for long-lived, late-to-mature species, like rockfishes (genus Sebastes), that may be unable to keep pace with climate change via genetic adaptation. Rockfishes exhibit matrotrophic viviparity and may be able to buffer their offspring from environmental stress through early developmental exposure or transgenerational plasticity (non-genetic inheritance of phenotypes). In this study, mature female gopher (S. carnatus) and blue (S. mystinus) rockfish were pre-exposed to one of four treatments; 1) control conditions, 2) low pH, 3) low DO, or 4) combined low pH/DO stressors during embryonic growth (i.e. fertilization and gestation), followed by a 5-day larval exposure after birth in either the same or a different treatment received by mothers. I used RNA sequencing to determine how the maternal environment affected larval rockfish gene expression (GE) at birth, after the 5-day larval exposure in either the same maternal treatment or a novel pH/DO environment, and between larvae sampled at birth and after the 5-day larval exposure within each treatment. For both species, I found that the maternal exposure drove larval GE patterns regardless of sampling time point or treatment. Furthermore, the maternal environment continued to strongly influence larval GE for at least the first five days after birth. In gopher rockfish, larvae differentially expressed fewer genes at birth between the control and hypoxic groups than larvae that gestated in and remained in the same treatment and were sampled after the 5-day larval exposure. Gene functions also shifted; at day 5, there was an increase in differentially expressed genes that were related to metabolic pathways, implying that the larvae in the hypoxic treatment ...