Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets
Abstract Energy expenditure is an important component of foraging ecology, but is extremely difficult to estimate in free-ranging animals and depends on how animals partition their time between different activities during foraging. Acceleration data have emerged as a new way to determine energy expe...
Main Authors: | , , , , , |
---|---|
Language: | unknown |
Published: |
Borealis
|
Subjects: | |
Online Access: | https://doi.org/10.5683/SP2/KS38PK |
_version_ | 1821749914679377920 |
---|---|
author | Jeanniard-du-Dot, Tiphaine Guinet, Christophe Arnould, John P. Y. Speakman, John R. Trites, Andrew W. Arnould, John P.Y. |
author_facet | Jeanniard-du-Dot, Tiphaine Guinet, Christophe Arnould, John P. Y. Speakman, John R. Trites, Andrew W. Arnould, John P.Y. |
author_sort | Jeanniard-du-Dot, Tiphaine |
collection | Borealis |
description | Abstract Energy expenditure is an important component of foraging ecology, but is extremely difficult to estimate in free-ranging animals and depends on how animals partition their time between different activities during foraging. Acceleration data have emerged as a new way to determine energy expenditure at a fine scale but this needs to be tested and validated in wild animals. This study investigated whether vectorial dynamic body acceleration (VeDBA) could accurately predict the energy expended by marine predators during a full foraging trip. We also aimed to determine whether the accuracy of predictions of energy expenditure derived from acceleration increased when partitioned by different types of at-sea activities (i.e. diving, transiting, resting and surface activities). To do so, we equipped 20 lactating northern (Callorhinus ursinus) and 20 lactating Antarctic fur seals (Arctocephalus gazella) with GPS, time-depth recorders and tri-axial accelerometers and obtained estimates of field metabolic rates using the doubly labelled water (DLW) method. VeDBA was derived from tri-axial acceleration, and at-sea activities (diving, transiting, resting and surface activities) were determined using dive depth, tri-axial acceleration and travelling speed. We found that VeDBA did not accurately predict the total energy expended by fur seals during their full foraging trips (R2 = 0·36). However, the accuracy of VeDBA as a predictor of total energy expenditure increased significantly when foraging trips were partitioned by activity and when activity-specific VeDBA was paired with time-activity budgets (R2 = 0·70). Activity-specific VeDBA also accurately predicted the energy expenditures of each activity independent of each other (R2 > 0·85). Our study confirms that acceleration is a promising way to estimate energy expenditures of free-ranging marine mammals at a fine scale never attained before. However, it shows that it needs to be based on the time-activity budgets that make up foraging trips rather than being ... |
genre | Antarc* Antarctic Antarctic Fur Seal Antarctic Fur Seals Arctocephalus gazella Callorhinus ursinus Northern fur seal |
genre_facet | Antarc* Antarctic Antarctic Fur Seal Antarctic Fur Seals Arctocephalus gazella Callorhinus ursinus Northern fur seal |
geographic | Antarctic |
geographic_facet | Antarctic |
id | ftborealisdata:doi:10.5683/SP2/KS38PK |
institution | Open Polar |
language | unknown |
op_collection_id | ftborealisdata |
op_doi | https://doi.org/10.5683/SP2/KS38PK |
op_relation | https://doi.org/10.5683/SP2/KS38PK |
publisher | Borealis |
record_format | openpolar |
spelling | ftborealisdata:doi:10.5683/SP2/KS38PK 2025-01-16T19:20:51+00:00 Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets Jeanniard-du-Dot, Tiphaine Guinet, Christophe Arnould, John P. Y. Speakman, John R. Trites, Andrew W. Arnould, John P.Y. https://doi.org/10.5683/SP2/KS38PK unknown Borealis https://doi.org/10.5683/SP2/KS38PK Other ODBA Antarctic fur seal Callorhinus ursinus Time-activity budget northern fur seal foraging 2011-2012 Arctocephalus gazella acceleration energy expenditure VeDBA ftborealisdata https://doi.org/10.5683/SP2/KS38PK 2022-10-10T05:31:31Z Abstract Energy expenditure is an important component of foraging ecology, but is extremely difficult to estimate in free-ranging animals and depends on how animals partition their time between different activities during foraging. Acceleration data have emerged as a new way to determine energy expenditure at a fine scale but this needs to be tested and validated in wild animals. This study investigated whether vectorial dynamic body acceleration (VeDBA) could accurately predict the energy expended by marine predators during a full foraging trip. We also aimed to determine whether the accuracy of predictions of energy expenditure derived from acceleration increased when partitioned by different types of at-sea activities (i.e. diving, transiting, resting and surface activities). To do so, we equipped 20 lactating northern (Callorhinus ursinus) and 20 lactating Antarctic fur seals (Arctocephalus gazella) with GPS, time-depth recorders and tri-axial accelerometers and obtained estimates of field metabolic rates using the doubly labelled water (DLW) method. VeDBA was derived from tri-axial acceleration, and at-sea activities (diving, transiting, resting and surface activities) were determined using dive depth, tri-axial acceleration and travelling speed. We found that VeDBA did not accurately predict the total energy expended by fur seals during their full foraging trips (R2 = 0·36). However, the accuracy of VeDBA as a predictor of total energy expenditure increased significantly when foraging trips were partitioned by activity and when activity-specific VeDBA was paired with time-activity budgets (R2 = 0·70). Activity-specific VeDBA also accurately predicted the energy expenditures of each activity independent of each other (R2 > 0·85). Our study confirms that acceleration is a promising way to estimate energy expenditures of free-ranging marine mammals at a fine scale never attained before. However, it shows that it needs to be based on the time-activity budgets that make up foraging trips rather than being ... Other/Unknown Material Antarc* Antarctic Antarctic Fur Seal Antarctic Fur Seals Arctocephalus gazella Callorhinus ursinus Northern fur seal Borealis Antarctic |
spellingShingle | Other ODBA Antarctic fur seal Callorhinus ursinus Time-activity budget northern fur seal foraging 2011-2012 Arctocephalus gazella acceleration energy expenditure VeDBA Jeanniard-du-Dot, Tiphaine Guinet, Christophe Arnould, John P. Y. Speakman, John R. Trites, Andrew W. Arnould, John P.Y. Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
title | Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
title_full | Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
title_fullStr | Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
title_full_unstemmed | Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
title_short | Data from: Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
title_sort | data from: accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets |
topic | Other ODBA Antarctic fur seal Callorhinus ursinus Time-activity budget northern fur seal foraging 2011-2012 Arctocephalus gazella acceleration energy expenditure VeDBA |
topic_facet | Other ODBA Antarctic fur seal Callorhinus ursinus Time-activity budget northern fur seal foraging 2011-2012 Arctocephalus gazella acceleration energy expenditure VeDBA |
url | https://doi.org/10.5683/SP2/KS38PK |