Long-term use of non-invasive sampling methods: does successful sampling of brown bears by hair snares and camera traps change over time?

Context. Non-invasive sampling methods are widely used by ecologists to collect animal hair, images, tissue or signs. Sampling devices are imperfect, and collection success may vary over time owing to behavioural changes in study organisms or other factors. If collection success decreases, the utili...

Full description

Bibliographic Details
Published in:Wildlife Research
Main Authors: A. E. Lincoln, A. J. Wirsing, T. P. Quinn
Format: Text
Language:English
Published: CSIRO Publishing 2020
Subjects:
Online Access:https://doi.org/10.1071/WR19156
Description
Summary:Context. Non-invasive sampling methods are widely used by ecologists to collect animal hair, images, tissue or signs. Sampling devices are imperfect, and collection success may vary over time owing to behavioural changes in study organisms or other factors. If collection success decreases, the utility of non-invasive sampling devices for longitudinal studies that rely on consistency may be compromised.Aims. Our primary objectives were to evaluate whether collection success of brown bear (Ursus arctos) hair by using hair snares and camera traps changed over time, and whether hair- and image-collection success was influenced by bear activity around the sampling site.Methods. We paired non-invasive sampling by hair snares with motion-activated cameras at six streams in Alaska over 4–6 years, so as to evaluate how often brown bears left samples on wires or were photographed by cameras, and whether this sampling success changed over time. Changes in sampling success were evaluated in the context of bear activity per sampling period as determined by camera data (number of bear–wire encounters) or hair snare (number of barbs with hair); genetic analyses allowed us to evaluate whether the same bears were sampled repeatedly.Key results. Overall, hair was collected in 78% and images in 73% of 2-day sampling periods when bears visited sites, and we observed no substantial change in the probability of successful sampling over time at 11 sites. The number of bear–wire encounters was positively correlated with the number of hair samples collected, as would be expected if sampling rates remained constant over time, and individual bears with previous wire experience were sampled in multiple years.Conclusions. Overall, the results indicated that sampling success by using hair snare and camera trap showed substantial interannual variability, but changes over time were not consistently identified across sites. Among-site variation in sampling success highlighted the importance of accounting for site-specific differences in ...